K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Châu ơi!đăng làm j z

26 tháng 3 2016

Chịu bài này rồi!

26 tháng 3 2016

mk mới hk lp 6 , bài này bó tay ko giải đc

AH
Akai Haruma
Giáo viên
30 tháng 5 2020

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

24 tháng 10 2021

\(a,\) Đặt \(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)

Với \(a=-b\) ta được \(A=0\)

Do vai trò bình đẳng của a,b,c và A bậc 3 nên nhân tử còn lại là hằng số k

Do đó \(A=k\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Cho \(a=b=c=1\Leftrightarrow3^3-1-1-1=8k\Leftrightarrow k=3\)

Do đó \(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(b,\) Đặt \(B=a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

Với \(a=b\Leftrightarrow B=0\)

Do vai trò bình đẳng của a,b,c và B bậc 4 nên \(B=\left(a-b\right)\left(b-c\right)\left(c-a\right)Q\) trong đó Q bậc nhất

Do đó \(Q=\left(a+b+c\right)R\) với R là hằng số

\(\Leftrightarrow B=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)R\)

Cho \(a=1;b=2;c=3\Leftrightarrow-12=12R\Leftrightarrow R=-1\)

Do đó \(B=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

\(c,\) Đặt \(C=\left(a+b+c\right)^5-a^5-b^5-c^5\)

Cho \(a=-b\Leftrightarrow C=0\)

Do vai trò bình đẳng của a,b,c và C bậc 5 nên \(C=\left(a+b\right)\left(b+c\right)\left(c+a\right)P\) trong đó P bậc 2

Do đó \(P=\left(a^2+b^2+c^2+ab+bc+ca\right)R\) với R là hằng số

\(\Leftrightarrow C=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)R\)

Cho \(a=1;b=2;c=3\Leftrightarrow7500=1500R\Leftrightarrow R=5\)

Do đó \(C=5\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)

24 tháng 10 2021

\(d,\) Đặt \(D=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)

Với \(a=b+c\Leftrightarrow D=0\)

Do vai trò bình đẳng của a,b,c và D bậc 4 nên \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)R\) với R bậc nhất

Do đó \(R=\left(a+b+c\right)Q\) với Q là hằng số

\(\Leftrightarrow D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)Q\)

Cho \(a=b=c=1\Leftrightarrow Q=1\)

Do đó \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)\)

28 tháng 9 2016

Thầy search đc ở trên mạng cái này em nhé :)

Toán lớp 8

29 tháng 9 2016

Arg ơn thầy :| Em bí mỗi đoạn x + y + z = 0 ....