Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
\(A=3a-3ab-b\)
Ta có : a = -a => a - (-a) = 0 => a + a = 0 => 2a = 0 => a = 0
2b + 1 = -3 => 2b = -4 => b = -2
Thay a = 0 và b = -2 vào ta có : \(A=3\cdot0-3\cdot0\cdot\left(-2\right)-\left(-2\right)=0-0+2=2\)
\(B=4a-5b\)
Ta có : |a| = 1 => \(a=\pm1\)
+) Với a = 1 và b = -2 thì \(B=4\cdot1-5\cdot\left(-2\right)=4-\left(-10\right)=14\)
+) Với a = -1 và b = -2 thì \(B=4\cdot\left(-2\right)-5\cdot\left(-2\right)=-8-\left(-10\right)=-8+10=2\)
Câu c nên sửa đề lại đi
`Answer:`
a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)
Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)
\(E=\frac{3a+2b}{4a-3b}\)
\(=\frac{3k+2.3k}{4k-3.3k}\)
\(=\frac{3k+6k}{4k-9k}\)
\(=\frac{9k}{-5k}\)
\(=-\frac{9}{5}\)
b. Thay `a-b=5` vào biểu thức `F`, ta được:
\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)
\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)
\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)
\(=1+1\)
\(=0\)
Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)
\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....
Ta có: \(|a|\) = \(\dfrac{1}{3}\) \(\Rightarrow\) a = \(\pm\)\(\dfrac{1}{3}\)
\(|b|\) = 0,25 \(\Rightarrow\) b= \(\pm\) 0,25
Ta xét hai trường hợp:
* Với a = \(\dfrac{1}{3}\) và b = 0,25 thì:
a) A = 3a - 3ab - b
= 3.\(\dfrac{1}{3}\) - 3.\(\dfrac{1}{3}\). 0,25 - 0,25
= 1-\(\dfrac{1}{4}\)- 0,25
= \(\dfrac{1}{2}\)
b) B = 5.\(\dfrac{a}{3}\) -3b
= 5.\(\dfrac{1}{\dfrac{3}{3}}\) - 3.0,25
= \(\dfrac{5}{9}\) -\(\dfrac{3}{4}\)
= \(\dfrac{-7}{36}\)
* Với a = -\(\dfrac{1}{3}\) , b = -0,25 thì:
a) A = 3a - 3ab -b
= 3.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\) ).(-0,25) -(-0,25)
= -1 - 0,25 - 0,25
= -\(\dfrac{3}{2}\)
b) B = 5.\(\dfrac{a}{3}\) - 3b
= 5.\(\dfrac{-1}{\dfrac{3}{3}}\) - 3. (-0,25)
= \(\dfrac{-5}{9}\) - (-\(\dfrac{3}{4}\) )
= \(\dfrac{7}{36}\)
Mk viết lại câu hỏi
Tính giá trị biểu thức vs |a| = 1/3 , |b| = 0,25