K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

\(A=3a-3ab-b\)

Ta có : a = -a => a - (-a) = 0 => a + a = 0 => 2a = 0 => a = 0

2b + 1 = -3 => 2b = -4 => b = -2

Thay a = 0 và b = -2 vào ta có : \(A=3\cdot0-3\cdot0\cdot\left(-2\right)-\left(-2\right)=0-0+2=2\)

\(B=4a-5b\)

Ta có : |a| = 1 => \(a=\pm1\)

+) Với a = 1 và b = -2 thì \(B=4\cdot1-5\cdot\left(-2\right)=4-\left(-10\right)=14\)

+) Với a = -1 và b = -2 thì \(B=4\cdot\left(-2\right)-5\cdot\left(-2\right)=-8-\left(-10\right)=-8+10=2\)

Câu c nên sửa đề lại đi 

20 tháng 9 2020

xin lỗi  câu c mk chép nhầm

C=2a+3b-4ab  biết |a|=1;|b|=2

8 tháng 4 2022

`Answer:`

a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)

Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)

\(E=\frac{3a+2b}{4a-3b}\)

\(=\frac{3k+2.3k}{4k-3.3k}\)

\(=\frac{3k+6k}{4k-9k}\)

\(=\frac{9k}{-5k}\)

\(=-\frac{9}{5}\)

b. Thay `a-b=5` vào biểu thức `F`, ta được:

\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)

\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)

\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)

\(=1+1\)

\(=0\)

19 tháng 12 2021

A=\(\dfrac{5}{9}\)

19 tháng 12 2021

\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{2a-5b}{-14}=\dfrac{a-3b}{-9}=\dfrac{4a+b}{16}=\dfrac{8a-2b}{16}\\ \Leftrightarrow A=\dfrac{-14}{-9}-\dfrac{16}{16}=\dfrac{14}{9}-1=\dfrac{5}{9}\)

\(\dfrac{a}{b}=\dfrac{1}{3}\)

nên b=3a

\(E=\dfrac{3a+2b}{4a-3b}=\dfrac{3a+6a}{4a-9a}=\dfrac{9}{-5}=-\dfrac{9}{5}\)

a-b=5 nên a=b+5

\(F=\dfrac{3\left(b+5\right)-5}{2\left(b+5\right)+b}-\dfrac{4b+5}{b+5+3b}\)

\(=\dfrac{3b+10}{3b+10}-1=1-1=0\)

5 tháng 11 2021

Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)

Áp dụng tc dtsbn:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)

11 tháng 11 2023

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng tỉ lệ thức ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)

b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng tỉ lệ thức ta có "

\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Các câu còn lại bạn làm tương tự