Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a^2+1}{a}=x\Rightarrow x=\frac{a^2+1}{a}\ge\frac{2a}{a}=2\)
Khi đó:
\(S=\frac{5x}{2}+\frac{1}{x}=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{9x}{4}\ge2\sqrt{\frac{1}{x}\cdot\frac{x}{4}}+\frac{9\cdot2}{4}=1+\frac{18}{4}=\frac{11}{2}\)
Dấu "=" xảy ra tại a=1
b) \(A=2x^2-x+2017\)
\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1}{2\sqrt{2}}+\frac{1}{8}+\frac{16135}{8}\)
\(=\left(\sqrt{2}x-\frac{1}{2\sqrt{2}}\right)^2+\frac{16135}{8}\ge\frac{16135}{8}\)
Vậy \(A_{min}=\frac{16135}{8}\Leftrightarrow\sqrt{2}x-\frac{1}{2\sqrt{2}}=0\Leftrightarrow x=\frac{1}{4}\)
a) \(A=a^4-2a^3+2a^2-2a+2\)
\(=\left(a^4-2a^3+a^2\right)+\left(a^2-2a+1\right)+1\)
\(=\left(a^2-a\right)^2+\left(a-1\right)^2+1\ge1.\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow}a=1\)
Vậy min A = 1 đạt tại a =1/
Câu hỏi của Soái muội - Toán lớp 8 - Học toán với OnlineMath
\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
\(A_{min}=3\) khi \(a=1\)
https://hoc24.vn/cau-hoi/co-the-dung-mot-can-dia-co-hai-dia-can-voi-nam-qua-cancac-qua-can-chi-de-o-mot-dia-can-de-can-tat-ca-cac-vat-co-khoi-luong-la-mot-so-tu-nhien-tu-1kg-den-30kg-duoc-khongcac-ban-giai-giup-mk-voi.341565384997
Thầy giải giúp e với ạ,e cảm ơn thầy ạ! <3
\(P=\frac{\left(a^2+1\right)^2+1}{a^2+1}=\left(a^2+1\right)+\frac{1}{a^2+1}\)
\(......\)
đến đây tự làm nhé