\(a^4-2a^3+2a^2-2a+2\)

giúp nhanh nhé

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

\(A=a^4-2a^3+2a^2-2a+2\)

\(A=a^2\left(a-1\right)^2+\left(a-1\right)^2+1\)

\(a^2\left(a-1\right)^2\ge0\)\(\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2\left(a-1\right)^2+\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2\left(a-1\right)^2+\left(a-1\right)^2+1\ge1\)

\(\Rightarrow Min_A=1\) khi \(a-1=0\Rightarrow a=1\)

27 tháng 11 2018

chuẩn cmnr

\(D=\left(\left(a^2\right)^2-2a^2.a+a^2\right)+3\left(a^2-2a+1\right)+5\)

\(=\left(a^2-a\right)^2+3\left(a-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi \(a=1\)

29 tháng 10 2015

A = (a- 2a3 + a2) + 2.(a- 2a + 1) + 3 = (a- a)2 + 2.(a - 1)+ 3 > 0 + 2.0 + 3

Dấu "=" xảy ra khi a2 - a = 0 và a - 1 = 0 <=> a = 1

Vậy Min A = 3 tại a = 1

29 tháng 12 2017
  1. Biến đổi: a4-2a3+a2+2a2-4a+2+3=(a2-a)2+2(a-1)2+3>=3=>Amin=3<=>x=1
  2.  
30 tháng 5 2017

\(A=\left(a^2\right)^2-2a^3+2a^2+a^2-4a+2+3\\ =\left(\left(a^2\right)^2-2a^2a+a^2\right)+2\left(a^2-2a+1\right)+3\ge3\)

\(=a^2\left(a^2-2a+1\right)+2\left(a^2-2a+1\right)+3\ge3\\ =2a^2\left(a-1\right)^4+3\ge3\)

Vậy GTNN của biểu thức A là 3 tại \(a=0\)hoặc \(a=1\).

9 tháng 6 2019

\(a^4-2a^3+3a^2-4a+5\)

\(=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)

\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Dấu "=" xảy ra khi a = 1 

Vậy với a = 1 thì \(A_{Min}=3\)

7 tháng 1 2020

Từ gt⇒0≤b≤2−2a3≤2;0≤b≤4−2a≤4⇒0≤b≤2−2a3≤2;0≤b≤4−2a≤4            

⇒0≤b≤2⇒0≤b≤2

Tương tự⇒a,b∈[0;2]⇒a,b∈[0;2]

Ta có:

A=a(a−2)−b≤a(a−2)≤0A=a(a−2)−b≤a(a−2)≤0

Dấu = xảy ra⇔a=b=0⇔a=b=0 hoặc a=2,b=0a=2,b=0

Ta có:

A≥a2−2a+2a3−2=(a−23)2−229≥−229A≥a2−2a+2a3−2=(a−23)2−229≥−229

và A≥a2−2a+2a−4=a2−4≥−4A≥a2−2a+2a−4=a2−4≥−4

Vì A≥−4A≥−4 ko xảy ra dấu = nên A≥−229⇔a=23,b=149

17 tháng 7 2019

a) \(M=2a^2+4a+7\)

\(M=2\left(a^2+2a+\frac{7}{2}\right)\)

\(M=2\left(a^2+2.a.1+1+\frac{5}{2}\right)\)

\(M=2\left(a^2+2.a.1+1\right)+2.\frac{5}{2}\)

\(M=2\left(a+1\right)^2+5\ge5\)

Dấu = xảy ra khi :

  \(a+1=0\Leftrightarrow a=-1\)

Vậy Mmin = 5 tại x = -1

# Ko bt có đúng ko nữa.....

17 tháng 7 2019

a) M= a^2+a^2+2a+2a+1+1+5

=(a^2+2a+1)+(a^2+2a+1)+5

=(a+1)^2+(a+1)^2+5

với mọi a cs: 

(a+1)^2 > 0

(a+1)^2 > 0

=> (a+1)^2+(a+1)^2 > 0

=> (a+1)^2+(a+1)^2+5 > 5

=> M > 5

dấu = xảy ra <=> (a+1)^2=0

                     <=> a+1=0

                     <=> a=-1

Vậy GTNN của  M=5 khi a=-1 

8 tháng 12 2019

a) Để P xác định \(\Leftrightarrow\hept{\begin{cases}2a-2\ne0\\2-2a^2\ne0\\a+2\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a^2\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1vâ\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)

b) \(P=\left(\frac{a+1}{2a-2}+\frac{1}{2-2a^2}\right).\frac{2a+2}{a+2}\)

\(=\left[\frac{a+1}{2\left(a-1\right)}+\frac{1}{2\left(1-a\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)

\(=\left[\frac{\left(a+1\right)^2}{2\left(a-1\right)\left(a+1\right)}-\frac{1}{2\left(a-1\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)

\(=\frac{\left(a+1\right)^2-1}{2\left(a-1\right)\left(a+1\right)}.\frac{2\left(a+1\right)}{a+2}\)

\(=\frac{a\left(a+2\right)}{\left(a-1\right)\left(a+2\right)}\)

\(=\frac{a}{a-1}\)

c) \(\left|a\right|=3\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

+) Với a=3 thỏa mãn \(\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)nên thay a=3 vào P ta được:

( làm nốt)

TH kia tương tự