Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có |x-10| > hoặc = 0
=> |x-10|+ 2021 > hoặc = 2021
Dấu "=" xảy ra khi x-10 = 0
=> x-10 = 0
=> x=10
Giá trị nhỏ nhất của biểu thức A=|x-10|+2021 là = 2021 khi x =10
Ta có : |x-10| > 0 => |x-10| + 2021 > 0 + 2021
A > 2021
Dấu"=" xảy ra khi x - 10 = 0 => x =10
Vậy Amin=2021 khi x = 10
\(A=\left(x+2\right)^2+\left|x+2\right|+15\)
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
\(\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)
\(\Rightarrow A\ge15\)Dấu bằng xảy ra.
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(minA=15\Leftrightarrow x=-2\)
Có x2 \(\ge\)0 với mọi x
=> x2 + 5 \(\ge\)5 với mọi x
=> (x2 + 5)2 \(\ge\)25 với mọi x
=> (x2 + 5)2 + 4 \(\ge\)29 với mọi x
Dấu "=" xảy ra <=> x2 = 0 <=> x = 0
KL: GTNN của biểu thức = 29 <=> x = 0
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Ta sẽ phá dấu giá trị tuyệt đối.
Với \(x\le2\) ta có \(A=2-x+5-x=7-2x\)
Do \(x\le2\) nên \(-2x\ge-4\Rightarrow7-2x\ge7-4=3.\)
Với \(2< x< 5\) ta có \(A=x-2+5-x=3\)
Với \(x\ge5\) ta có \(A=x-2+x-5=2x-7\)
Do \(x\ge5\) nên \(2x\ge10\Rightarrow2x-7\ge3\)
Vậy giá trị nhỏ nhất của A là 3 khi \(2\le x\le5\)
Ta có A=|x-2|+|5-x| lớn hơn hoăc bằng 3
Dấu = xảy ra <=>x-2 và 5-x lớn hơn hoặc bằng 0
=>1<x<6
Vậy MIN A=3<=>1<X<6