K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

a) \(A=\left(3x-2\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(3x-2\right)\)

\(\Leftrightarrow A=\left(x+1\right)^2-2\left(x+1\right)\left(3x-2\right)+\left(3x-2\right)^2\)

\(\Leftrightarrow A=\left[\left(x+1\right)-\left(3x-2\right)\right]^2\)

\(\Leftrightarrow A=\left(x+1-3x+2\right)^2\)

\(\Leftrightarrow A=\left(3-2x\right)^2\)

Thay \(x=\dfrac{3}{2}\) vào biểu thức A ta được:

\(\left(3-2.\dfrac{3}{2}\right)^2=\left(3-3\right)^2=0^2=0\)

Vậy giá trị của biểu thức A tại \(x=\dfrac{3}{2}\) là 0

b) \(B=\dfrac{x^2y\left(y-x\right)-xy^2\left(x-y\right)}{3y^2-3x^2}\)

\(\Leftrightarrow B=\dfrac{x^2y\left(y-x\right)+xy^2\left(y-x\right)}{3\left(y^2-x^2\right)}\)

\(\Leftrightarrow B=\dfrac{\left(y-x\right)\left(x^2y+xy^2\right)}{3\left(y-x\right)\left(y+x\right)}\)

\(\Leftrightarrow B=\dfrac{xy\left(y-x\right)\left(x+y\right)}{3\left(y-x\right)\left(y+x\right)}\)

\(\Leftrightarrow B=\dfrac{xy\left(y-x\right)\left(y+x\right)}{3\left(y-x\right)\left(y+x\right)}\)

\(\Leftrightarrow B=\dfrac{xy}{3}\)

Thay \(x=-3\)\(y=\dfrac{1}{2}\) vào biểu thức B ta được:

\(\dfrac{\left(-3\right).\dfrac{1}{2}}{3}=\dfrac{\dfrac{-3}{2}}{3}=\dfrac{\dfrac{-3}{2}}{3}=\dfrac{-1}{2}\)

Vậy giá trị của biểu thức B tại \(x=-3\)\(y=\dfrac{1}{2}\)\(\dfrac{-1}{2}\)

c) \(C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}-\dfrac{2x\left(1-x\right)}{9-x^2}\)

\(\Leftrightarrow C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}+\dfrac{2x\left(1-x\right)}{x^2-9}\)

\(\Leftrightarrow C=\dfrac{x+1}{x-3}-\dfrac{1-x}{x+3}+\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\) MTC: \(\left(x-3\right)\left(x+3\right)\)

\(\Leftrightarrow C=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{\left(x+1\right)\left(x+3\right)-\left(x-3\right)\left(1-x\right)+2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{\left(x^2+3x+x+3\right)-\left(x-x^2-3+3x\right)+\left(2x-2x^2\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{x^2+3x+x+3-x+x^2+3-3x+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{2x+6}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow C=\dfrac{2}{x-3}\)

Thay \(x=5\) vào biểu thức C ta được:

\(\dfrac{2}{5-3}=\dfrac{2}{2}=1\)

Vậy giá trị của biểu thức C tại \(x=5\) là 1

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

17 tháng 10 2017

$a)$ \(x^{12}:\left(-x\right)^6\)

\(=x^{12}:x^6\)

\(=x^{12-6}\)

\(=x^6\)

$b) $ \(\left(-x\right)^7:\left(-x\right)^5\)

\(=\left(-x\right)^{7-5}\)

\(=\left(-x\right)^2\)

\(=x^2\)

$c)$ \(5x^2y^4:10x^2y\)

\(=\dfrac{1}{2}y^3\)

$e)$ \(\left(-xy\right)^{14}:\left(-xy\right)^7\)

\(=\left(-xy\right)^{14-7}\)

\(=\left(-xy\right)^7\)

Các câu còn lại tương tự nha bạn!

13 tháng 12 2017

viết đầu bài rõ ràng 1 chút chả hiểu gì cả

13 tháng 12 2017

chứng minh biểu thức M có giá trị không phụ thuộc x,y =)) Giúp mk vs ạ

26 tháng 11 2018

a)\(\dfrac{1}{x+2},\dfrac{8}{x^2-2x}\) MTC: x(x+2)

=\(\dfrac{1x}{x\left(x+2\right)},\dfrac{8}{-x\left(x+2\right)}\)

31 tháng 12 2017

\(B=\dfrac{1}{x}+\dfrac{1}{y}\\ =\dfrac{x+y}{xy}=\dfrac{5}{6}\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\\ =5^3-3.6.5\\ =125-90\\ =35\)

31 tháng 12 2017

A = x2 + y2

= (x2 + 2xy + y2) - 2xy

= (x + y)2 - 2xy

= 52 - 2.6

= 25 - 12

= 13

F = x3 + y3

= (x + y)3 - 3xy(x + y)

= 53 - 3.6.5

= 125 - 90

= 35

8 tháng 8 2017

a) Ta có: \(2x^2-3xy+x\)

\(=x\left(2x-3y+1\right)\)

Tại x = 3; y = 2 thì

\(2\left(2.3-3.2+1\right)=2\).

b) Lại có: \(x\left(x-y\right)+y\left(y-x\right)\)

\(=x\left(x-y\right)-y\left(x-y\right)\)

\(=\left(x-y\right)^2\)

Tại x = 53; y =3 thì:

\(\left(53-3\right)^2=50^2=2500.\)

8 tháng 8 2017

a) thay \(x=3;y=2\) vào ta có : \(2x^2-3xy+x=2.3^2-3.3.2+3=2.9-18+3=18-18+3=3\)

b) ta có : \(x\left(x-y\right)+y\left(y-x\right)\Leftrightarrow x\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(x-y\right)=\left(x-y\right)^2\)

thay \(x=53;y=3\) vào ta có : \(\left(53-3\right)^2=\left(50\right)^2=2500\)