Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=2\sqrt{x-34}+4\sqrt{y-21}+6\sqrt{z-4}+45\)
ĐK: \(x\ge34;y\ge21;z\ge4\)
\(pt\Leftrightarrow x-34-2\sqrt{x-34}+1+y-21-4\sqrt{y-21}+4+z-4-6\sqrt{z-4}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-34}-1\right)^2+\left(\sqrt{y-21}-2\right)^2+\left(\sqrt{z-4}-3\right)^2=0\left(1\right)\)
Dễ Thấy: \(VT_{\left(1\right)}\ge0\) nên dấu "=" khi
\(\hept{\begin{cases}\sqrt{x-34}=1\\\sqrt{y-21}=2\\\sqrt{z-4}=3\end{cases}}\)
Giải tiếp rồi thay vào T
\(ĐK:x\ge2;y\le1;z\ge-3\)
\(4x-y+z+10=4\sqrt{x-2}+6\sqrt{1-y}+4\sqrt{z+3}\)
\(\Leftrightarrow4x-y+z+10-4\sqrt{x-2}-6\sqrt{1-y}-4\sqrt{z+3}=0\)
\(\Leftrightarrow\left(4x-8-4\sqrt{x-2}+1\right)+\left(9-6\sqrt{1-y}+1-y\right)+\left(z+3-4\sqrt{z+3}+4\right)=0\)
\(\Leftrightarrow\left(2\sqrt{x-2}-1\right)^2+\left(3-\sqrt{1-y}\right)^2+\left(\sqrt{z+3}-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}-1=0\\3-\sqrt{1-y}=0\\\sqrt{z+3}-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{9}{4}\\y=-8\\z=1\end{cases}}\left(tm\right)\)
\(\Rightarrow4x+y+z=4\cdot\frac{9}{4}-8+1=2\)
Đk: \(-1\le x,y,z\le1\)
Ta có: \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}=\frac{x^2-y^2}{2}+\frac{1}{2}\) (bđt cosi)
CMTT: \(y\sqrt{1-z^2}\le\frac{y^2-z^2}{2}+\frac{1}{2}\)
\(z\sqrt{1-x^2}\le\frac{z^2-x^2}{2}+\frac{1}{2}\)
=> VT = \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2-y^2}{2}+\frac{y^2-z^2}{2}+\frac{z^2-x^2}{2}+\frac{3}{2}=\frac{3}{2}\)
VP = 3/2
=> VT = VP <=> \(\hept{\begin{cases}x^2=1-y^2\\y^2=1-z^2\\z^2=1-x^2\end{cases}}\) <=> \(x^2+y^2+z^2=1-y^2+1-z^2+1-x ^2\)
<=> \(2x^2+2y^2+2z^2=3\) <=> \(x^2+y^2+z^2=\frac{3}{2}\)
trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)