\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

Đặt \(A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(A^2=5+2\sqrt{6}-2\sqrt{25-24}+5-2\sqrt{6}\)

\(=10-2=8\)

\(\Rightarrow A=2\sqrt{2}\)

√(5 + 2√6) - √(5 - 2√6)
= √(√2 + √3)^2 - √(√2 - √3)^2
= I √2 + √3 I - I √2 - √3 I
= √2 + √3 - (√3 - √2)
= √2 + √3 - √3 + √2
= 2√2

13 tháng 7 2019

\(\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}\right)\) 

\(=\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{\left(2^2+2.2\sqrt{5}+\sqrt{5^2}\right)}+\sqrt[3]{2+\sqrt{5}}\right)\) 

\(=\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{\left(2+\sqrt{5}\right)^2}+\sqrt[3]{2+\sqrt{5}}\right)\) 

\(=2\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{2+\sqrt{5}}=2\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}=2\sqrt[3]{4-5}=2\sqrt[3]{-1}=-1.2=-2\)

13 tháng 7 2019

ha dẻ vcayk mafd  bạn lét  123=4=1=5342=6678=+493076

25 tháng 7 2020

\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\frac{10+4\sqrt{6}}{2}}-\sqrt{\frac{10-4\sqrt{6}}{2}}\)

\(=\sqrt{\frac{6+2.2.\sqrt{6}+4}{2}}-\sqrt{\frac{6-2.2.\sqrt{6}+4}{2}}\)

\(=\frac{\sqrt{\left(\sqrt{6}+2\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{6}-2\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{6}+2\right|-\left|\sqrt{6}-2\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{6}+2-\sqrt{6}+2}{\sqrt{2}}\)

\(=\frac{4}{\sqrt{2}}\)

\(=2\sqrt{2}\)

25 tháng 7 2020

= 3,14626437-0,3178372452

=2,828427125

MIK KO GHI LẠI ĐỀ NHA 

11 tháng 8 2017

ai nay dung kinh nghiem la chinh

cau a)

ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)

\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)

khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)

\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)

\(x=\frac{3-1}{1}=2\)

suy ra 

x^3-4x+1=1

A=1^2018

A=1

b)

ta thay

\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)

khi do 

\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)

\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)

x=2

thay vao

x^3+3x-14=0

B=0^2018

B=0

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
7 tháng 7 2019

\(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}.\)

\(=\frac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\left(\sqrt{3}-1\right)}+\frac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\left(\sqrt{3}+1\right)}+\frac{5}{\sqrt{6}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{3-1}+\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{3+1}+\frac{5}{\sqrt{6}}\)

\(=\frac{\left(\sqrt{3}+1\right)}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{8}}+\frac{5}{\sqrt{6}}\)

\(=...\)

9 tháng 7 2019

\(a,\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)

\(=\frac{2.\left(\sqrt{6}+2+\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\frac{5\sqrt{6}}{6}\)

\(=\frac{4\sqrt{6}}{6-2^2}+\frac{5\sqrt{6}}{6}=2\sqrt{6}+\frac{5\sqrt{6}}{6}\)

\(=\frac{17\sqrt{6}}{6}\)

\(b,\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)

\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}\)

\(=\frac{2\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}\)

\(=\frac{2\sqrt{5}}{5+2\sqrt{6}-5}=\sqrt{\frac{5}{6}}\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

12 tháng 5 2018

a/ \(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)

\(\sqrt{\left(2a^2-3\right)^2}-\sqrt{\left(a^2-4\right)^2}\)

\(|2a^2-3|-|a^2-4|\)

\(2a^2-3+a^2-4\)
\(3a^2-7\)

Thay a=\(\sqrt{3}\).Ta có:

\(3.\left(\sqrt{3}\right)^2-7\)

= 3.3-7=2

12 tháng 5 2018

b/ \(\sqrt{10a^2-12a\sqrt{10}+36}\)

\(\sqrt{\left(a\sqrt{10}\right)^2-2.a\sqrt{10}.6+6^2}\)

\(\sqrt{\left(a\sqrt{10}-6\right)^2}\)

\(|a\sqrt{10}-6|\)

=  \(-a\sqrt{10}+6\)

Thay  a= \(\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)=\(\frac{3}{\sqrt{10}}\),Ta có:

\(-\frac{3}{\sqrt{10}}.\sqrt{10}+6\)

= -3+6 =3