Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
\(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}.\)
\(=\frac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\left(\sqrt{3}-1\right)}+\frac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\left(\sqrt{3}+1\right)}+\frac{5}{\sqrt{6}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{3-1}+\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{3+1}+\frac{5}{\sqrt{6}}\)
\(=\frac{\left(\sqrt{3}+1\right)}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{8}}+\frac{5}{\sqrt{6}}\)
\(=...\)
\(a,\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)
\(=\frac{2.\left(\sqrt{6}+2+\sqrt{6}-2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\frac{5\sqrt{6}}{6}\)
\(=\frac{4\sqrt{6}}{6-2^2}+\frac{5\sqrt{6}}{6}=2\sqrt{6}+\frac{5\sqrt{6}}{6}\)
\(=\frac{17\sqrt{6}}{6}\)
\(b,\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}\)
\(=\frac{2\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}\)
\(=\frac{2\sqrt{5}}{5+2\sqrt{6}-5}=\sqrt{\frac{5}{6}}\)
G = \(\sqrt{6}-2+5-\sqrt{6}+2^3=3+8=11\)
F= \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(2^5\right)^2}\)=\(2+\sqrt{3}-\sqrt{3}+1+2^5=3+32=35\)
H = \(\sqrt{6}-\frac{4\left(\sqrt{10}+\sqrt{6}\right)}{10-6}+\frac{\sqrt{10}\left(\sqrt{10}-1\right)}{\sqrt{10}-1}\)=\(\sqrt{6}-\sqrt{10}-\sqrt{6}+\sqrt{10}=0;\)
a) \(\left(\sqrt{125}+\sqrt{45}-2\sqrt{80}\right).\sqrt{5}=\left(5\sqrt{5}+3\sqrt{5}-8\sqrt{5}\right).\sqrt{5}\)
\(=0.\sqrt{5}=0\)
b) \(\frac{5-2\sqrt{6}}{\sqrt{2}-\sqrt{3}}=\frac{\left(5-2\sqrt{6}\right)\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}=\frac{\left(5\sqrt{2}+5\sqrt{3}-4\sqrt{3}-6\sqrt{2}\right)}{-1}\)
\(=-\left(-\sqrt{2}+\sqrt{3}\right)=\sqrt{2}-\sqrt{3}\)
a,\(\left(\sqrt{125}+\sqrt{45}-2\sqrt{80}\right).\sqrt{5}\)
\(=\left(5\sqrt{5}+3\sqrt{5}-8\sqrt{5}\right).\sqrt{5}\)
\(=0.\sqrt{5}\)
\(=0\)
b,\(\frac{5-2\sqrt{6}}{\sqrt{2}-\sqrt{3}}\)
\(=\frac{\left(5-2\sqrt{6}\right).\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right).\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{\sqrt{3}-\sqrt{2}}{-1}\)
\(=\sqrt{2}-\sqrt{3}\)
\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{\frac{10+4\sqrt{6}}{2}}-\sqrt{\frac{10-4\sqrt{6}}{2}}\)
\(=\sqrt{\frac{6+2.2.\sqrt{6}+4}{2}}-\sqrt{\frac{6-2.2.\sqrt{6}+4}{2}}\)
\(=\frac{\sqrt{\left(\sqrt{6}+2\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{6}-2\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{6}+2\right|-\left|\sqrt{6}-2\right|}{\sqrt{2}}\)
\(=\frac{\sqrt{6}+2-\sqrt{6}+2}{\sqrt{2}}\)
\(=\frac{4}{\sqrt{2}}\)
\(=2\sqrt{2}\)
= 3,14626437-0,3178372452
=2,828427125
MIK KO GHI LẠI ĐỀ NHA