Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔOMN cân tại O
mà OH là đường cao
nên H là trung điểm của MN
Xét tứ giác BMCN có
H là trung điểm chung của MN và BC
BC vuông góc với MN
DO đó: BMCN là hình thoi
b: Xét (O') có
ΔAGC nội tiếp
AC là đường kính
Do đó: ΔAGC vuông tại G
=>CG vuông góc với AM
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>MB vuông góc với AM
=>MB//CG
CMBN là hình thoi nên CN//MB
=>CN vuông góc với AM
=>C,N,G thẳng hàng
8.
\(a^2+9b^2=10ab\Leftrightarrow a^2+6ab+9b^2=16ab\)
\(\Leftrightarrow\left(a+3b\right)^2=16ab\)
\(\Rightarrow log\left(a+3b\right)^2=log\left(16ab\right)\)
\(\Rightarrow2log\left(a+3b\right)=log16+loga+logb\)
\(\Leftrightarrow log\left(a+3b\right)-\frac{log4^2}{2}=\frac{loga+logb}{2}\)
\(\Leftrightarrow log\left(a+3b\right)-log4=\frac{loga+logb}{2}\)
\(\Leftrightarrow log\frac{a+3b}{4}=\frac{loga+logb}{2}\)
9.
Tung độ của điểm M bằng 0 nên nó nằm trên mặt phẳng Oxz
5.
\(z^2+4z+5=0\Leftrightarrow\left(z+2\right)^2=-1=i^2\)
\(\Rightarrow\left[{}\begin{matrix}z+2=i\\z+2=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}z_2=-2+i\\z_1=-2-i\end{matrix}\right.\)
\(\Rightarrow w=z_1-2z_2=2-3i\)
\(\Rightarrow\left|w\right|=\sqrt{2^2+\left(-3\right)^2}=\sqrt{13}\)
6.
\(\overrightarrow{AB}=\left(1;2;1\right)\Rightarrow\) mặt phẳng (P) nhận (1;2;1) là 1 vtpt
Pt (P): \(1\left(x-0\right)+2\left(y-1\right)+1\left(z-1\right)=0\)
\(\Leftrightarrow x+2y+z-3=0\)
7.
Đề chắc ghi sai, có phải đề đúng là xác suất để ko có học sinh nam nào ngồi cạnh nhau?
Xếp bất kì: có \(9!\) cách
Xếp 6 bạn nữ có \(6!\) cách, 6 bạn nữ này tạo ra 7 vị trí trống, xếp 3 bạn nam vào các vị trí trống đó có \(A_7^3\) cách
Xác suất: \(P=\frac{6!.A_7^3}{9!}=\frac{5}{12}\)
14.
Pt mp (P) qua A và vuông góc d:
\(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)
\(\Leftrightarrow x-2y+2z+6=0\)
Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)
Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:
\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\) \(\Rightarrow M\left(2;5;1\right)\)
A' đối xứng A qua d \(\Rightarrow\)M là trung điểm AA'
Theo công thức trung điểm \(\Rightarrow A'\left(2;7;3\right)\)
15.
Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)
PT (P) qua A và vuông góc d:
\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)
\(\Leftrightarrow3x+2y-z-4=0\)
H là giao điểm d và (P) nên tọa độ thỏa mãn:
\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)
\(\Rightarrow H\left(1;0;-1\right)\)
11.
Thay tọa độ 4 điểm vào pt d chỉ có đáp án A thỏa mãn
12.
Phương trình (P) qua A và vuông góc \(\Delta\):
\(1\left(x-0\right)+1\left(y-1\right)-1\left(z+1\right)=0\Leftrightarrow x+y-z-2=0\)
Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:
\(1+t+2+t-\left(13-t\right)-2=0\Rightarrow t=4\) \(\Rightarrow M\left(5;6;9\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(5;5;10\right)=5\left(1;1;2\right)\)
Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=1+t\\z=-1+2t\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=5+t\\y=6+t\\z=9+2t\end{matrix}\right.\)
13.
Pt tham số đường d qua A vuông góc (P): \(\left\{{}\begin{matrix}x=-t\\y=1-2t\\z=-2+2t\end{matrix}\right.\)
H là giao điểm (P) và d nên tọa độ thỏa mãn:
\(t-2\left(1-2t\right)+2\left(-2+2t\right)-3=0\Rightarrow t=1\)
\(\Rightarrow H\left(-1;-1;0\right)\)
Làm biếng vẽ hình quá, bạn tự vẽ :D
1/ Dễ dàng nhận ra các tam giác BAD và BCD đều
Do \(AB//\left(SCD\right)\Rightarrow d\left(B;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)\)
Từ A kẻ \(AH\perp CD\Rightarrow AH=\frac{a\sqrt{3}}{2}\Rightarrow CD\perp\left(SAH\right)\)
Từ A kẻ \(AK\perp SH\Rightarrow AK\perp\left(SCD\right)\)
\(\Rightarrow AK=d\left(A;\left(SCD\right)\right)=d\left(B;\left(SCD\right)\right)\)
Áp dụng hệ thức lượng: \(\frac{1}{AK^2}=\frac{1}{AH^2}+\frac{1}{SA^2}\Rightarrow AK=\frac{SA.AH}{\sqrt{SA^2+AH^2}}=...\)
Câu 2:
OA cắt \(\left(SBC\right)\) tại C, mà O là trung điểm AC
\(\Rightarrow d\left(O;\left(SBC\right)\right)=\frac{1}{2}d\left(A;\left(SBC\right)\right)\)
Tương tự như câu trên, tam giác ABC đều, từ A kẻ \(AH\perp BC\Rightarrow BC\perp\left(SAH\right)\)
\(\Rightarrow AH=\frac{a\sqrt{3}}{2}\)
Từ A kẻ \(AK\perp SH\Rightarrow AK\perp\left(SBC\right)\)
\(\Rightarrow AK=d\left(A;\left(SBC\right)\right)=2d\left(O;\left(SBC\right)\right)\)
Áp dụng hệ thức lượng:
\(\frac{1}{AK^2}=\frac{1}{AH^2}+\frac{1}{SA^2}\Rightarrow d\left(O;\left(SBC\right)\right)=\frac{1}{2}AK=\frac{SA.AH}{2\sqrt{SA^2+AH^2}}=...\)