Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=25^{\frac{1}{2}+\frac{1}{9}\log_{\frac{1}{2}}27+\log_{125}81}=\left(5^2\right)^{\frac{1}{2}+\frac{1}{9}\log_{5^{-1}}3^3+\log_{5^3}3^4}\)
\(=5^{1-\frac{2}{3}\log_53+\frac{8}{3}\log_53}=5^{1+2\log_53}=5.5^{\log_53^2}=5.9=45\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+\left(\frac{1}{16}\right)^{\frac{3}{4}}+2\left(\frac{8}{27}\right)^{\frac{2}{3}}\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+55+\frac{32}{3}\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+\frac{197}{3}\)
\(A=243+\frac{197}{3}\)
\(A=\frac{926}{3}\)
Ta có \(A=3^{\frac{3}{2}.\frac{4}{3}}+\left(\frac{1}{2}\right)^{4.\frac{3}{4}}+2\left(\frac{2}{3}\right)^{3.\frac{2}{3}}=3^2+\left(\frac{1}{2}\right)^3+2\left(\frac{2}{3}\right)^2=\frac{721}{72}\)
\(I=9^{\frac{1}{\log_63}}+4^{\frac{1}{\log_82}}-10^{\log99}=\left(3^2\right)^{\log_36}+\left(2^2\right)^{\log_28}-99\)
\(=3^{\log_36^2}+2^{\log_38^2}-99=6^2+8^2-99=1\)
Ta có:
\(\left(\frac{1}{4}\right)^{-\frac{3}{2}}=8\) ;
\(2\left(\frac{125}{27}\right)^{-\frac{2}{3}}=2.\frac{9}{25}=\frac{18}{25}\) ;
\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=2\Rightarrow2^{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}}=2^2=4\)
\(\Rightarrow M=8-\frac{18}{25}+4=4\frac{18}{25}\)
Ta có \(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)
Nên \(B=2^{2\left(-\frac{3}{2}\right)}-2\left(\frac{5}{3}\right)^{3\left(-\frac{2}{3}\right)}+2^2=2^3-2\left(\frac{3}{5}\right)^2+4=\frac{282}{25}\)
\(B=\frac{a^{\frac{1}{4}}-a^{\frac{9}{4}}}{a^{\frac{1}{4}}-a^{\frac{5}{4}}}-\frac{b^{-\frac{1}{2}}-b^{\frac{3}{2}}}{b^{\frac{1}{2}}+b^{-\frac{1}{2}}}=\frac{a^{\frac{1}{4}}\left(1-a^2\right)}{a^{\frac{1}{4}}\left(1-a\right)}-\frac{b^{-\frac{1}{2}}\left(1-b^2\right)}{b^{-\frac{1}{2}}\left(1-b\right)}\)
\(=\left(1+a\right)-\left(1-b\right)=a+b=2013-\sqrt{2}+\sqrt{2}-2015=1\)
\(N=\log_{\frac{1}{3}}5\log_{25}\frac{1}{7}=\log_{3^{-1}}5\log_{5^5}3^{-3}=\left(-5\right)\left(-\frac{3}{2}\right).\log_35\log_53=\frac{15}{2}\)
\(E=16\left[\log_{3^{-2}}3^{\frac{3}{2}}\right]^2+23\log_{2^{\frac{9}{2}}}2^{\frac{5}{2}}-12\log_55^{-3}=16\left(-\frac{3}{4}\right)^2+9\frac{5}{9}-12\left(-3\right)=50\)
\(D=\log_{5^{-1}}\left(5^2\right)-3\log_{3^2}\left(3^{-1}\right)+4.\log_{2^{\frac{3}{2}}}2^6=-2+\frac{3}{2}+16=\frac{31}{2}\)
\(P=\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6+\sqrt{\frac{847}{27}}}\)
Ta áp dụng hằng đẳng thức :
\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow P^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}+3\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}\left(3\sqrt[3]{6+\sqrt{\frac{847}{27}}}.\sqrt[3]{6-\sqrt{\frac{847}{27}}}\right)\)
\(\Leftrightarrow P^3=12+3.\sqrt[3]{36-\frac{847}{27}}.P=12+5P\)
\(\Leftrightarrow P^3-5P-12=0\)
\(\Leftrightarrow\left(P-3\right)\left(P^2+3P+4\right)=0\)
\(\Leftrightarrow P=3\) hoặc \(P^3+3P+4=0\) vô nghiệm
Vậy \(P=3\)
\(E=\frac{30}{1.2.3}+\frac{30}{2.3.4}+\frac{30}{3.4.5}+...+\frac{30}{98.99.100}\)
\(E=15\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(E=15\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(E=15\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(E=15.\frac{4949}{9900}\)
\(E=\frac{4949}{660}\)