Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x^2+2xy+y^2\right)=x^2-xy+y^2+3xy=\left(x+y\right)^2=1\)
Bạn Nguyễn Thị Bích Hậu cho mình hỏi \(6x^2y^2\left(x+y\right)\)đâu rồi. sao tự nhiên biến mất vậy??
1; \(x^2\) + 3\(x^2\) + 3\(x\) = 4\(x^2\) + 3\(x\) (1)
Thay \(x=99\) vào (1) ta có:
4.992 + 3.99 = 4.9801 + 297 = 39204 + 297 = 39501
Bài làm :
Ta có :
\(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\):
\(Q=x^3+y^3-2x^2-2y^2+3x^2y+3xy^2-4xy+3\left(x+y\right)+10\)
\(Q=\left(x^3+y^3+3x^2y+3xy^2\right)-\left(2x^2+2y^2+4xy\right)+3\left(x+y\right)+10\)
\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
Thay x+y=5 vào biểu thức trên ; ta được :
\(Q=5^3-2.5^2+3.5+10=125-50+15+10=100\)
Vậy Q=100
\(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=x^3+y^3-2x^2-2y^2+3x^2y+3xy^2-4xy+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(2x^2+4xy+2y^2\right)+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
Thay x + y = 5 vào pt ta được :
\(Q=5^3-2.5^2+3.5+10=125-50+15+10=100\)
Vậy Q = 100 <=> x + y = 5
chị học trường nào mà còn phải học Vnen nữa vậy, trường chưa bỏ à
\(A=-2\)
\(\Leftrightarrow5x^2+y^2+4xy-6x-2y=-2\)
\(\Leftrightarrow4x^2+x^2+y^2+4xy-4x-2x-2y+1+1=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+y-1\right)^2+\left(x-1\right)^2=0\)(1)
Mà \(\left(2x+y-1\right)^2+\left(x-1\right)^2\ge0\)nên (1) xảy ra
\(\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=1\end{cases}}\)
\(\Rightarrow B=1^{2015}.\left(-1\right)^{2016}-1^{2016}.\left(-1\right)^{2017}+2014\)
\(=1+1+2014=2016\)
Ta có: A = -2
=> 5x2 + y2 + 4xy - 6x - 2y = -2
=> 5x2 + y2 + 4xy - 6x - 2y + 2 = 0
=> (4x2 + 4xy + y2) - 2(2x + y) + 1 + (x2 - 2x + 1) = 0
=> (2x + y)2 - 2(2x + y) + 1 + (x - 1)2 = 0
=> (2x + y - 1)2 + (x - 1)2 = 0
<=> \(\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}y=1-2x\\x=1\end{cases}}\)
<=> \(\hept{\begin{cases}y=1-2.1=-1\\x=1\end{cases}}\)
Với x = 1; y = -1 => B = 12015.(-1)2016 - 12016.(-1)2017 + 2014
= 1 + 1 + 2014 = 2016