Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=4x2+4xy+y2+x2-6x-2y+1
=(2x+y)2-4x-2y+1+x2-2x+1-1
=[(2x+y)2-2(2x+y)+1]+(x-1)2-1
=(2x+y+1)2+(x-1)2-1
ta có: (2x+y+1)2\(\ge0\)với\(\forall\)x
(x-1)2\(\ge0\)với \(\forall\)x
\(\Rightarrow\left(2x+y+1\right)^2+\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+y+1\right)^2+\left(x+1\right)^2-1\ge-1\forall x\)
\(\Rightarrow N\ge-1\)
Dấu '=' xảy ra\(\Leftrightarrow\hept{\begin{cases}\left(2x+y+1\right)^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
vậy N đạt GTNN là -1 khi và chỉ khi x=1;y=-3
a) Ta có: \(P=5x^2+4xy-6x+y^2+2030\)
\(=\left(4x^2+4xy+y^2\right)+\left(x^2-6x+9\right)+2021\)
\(=\left(2x+y\right)^2+\left(x-3\right)^2+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-3=0\\y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2x=-6\end{matrix}\right.\)
b) Ta có: \(a^5-5a^3+4a\)
\(=a\left(a^4-5a^2+4\right)\)
\(=a\left(a^2-4\right)\left(a^2-1\right)\)
\(=\left(a-2\right)\left(a-1\right)\cdot a\cdot\left(a+1\right)\left(a+2\right)\)
Vì a-2;a-1;a;a+1;a+2 là tích của 5 số nguyên liên tiếp
nên \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5!\)
hay \(a^5-5a^3+4a⋮120\)
\(A=-2\)
\(\Leftrightarrow5x^2+y^2+4xy-6x-2y=-2\)
\(\Leftrightarrow4x^2+x^2+y^2+4xy-4x-2x-2y+1+1=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+y-1\right)^2+\left(x-1\right)^2=0\)(1)
Mà \(\left(2x+y-1\right)^2+\left(x-1\right)^2\ge0\)nên (1) xảy ra
\(\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=1\end{cases}}\)
\(\Rightarrow B=1^{2015}.\left(-1\right)^{2016}-1^{2016}.\left(-1\right)^{2017}+2014\)
\(=1+1+2014=2016\)
Ta có: A = -2
=> 5x2 + y2 + 4xy - 6x - 2y = -2
=> 5x2 + y2 + 4xy - 6x - 2y + 2 = 0
=> (4x2 + 4xy + y2) - 2(2x + y) + 1 + (x2 - 2x + 1) = 0
=> (2x + y)2 - 2(2x + y) + 1 + (x - 1)2 = 0
=> (2x + y - 1)2 + (x - 1)2 = 0
<=> \(\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}y=1-2x\\x=1\end{cases}}\)
<=> \(\hept{\begin{cases}y=1-2.1=-1\\x=1\end{cases}}\)
Với x = 1; y = -1 => B = 12015.(-1)2016 - 12016.(-1)2017 + 2014
= 1 + 1 + 2014 = 2016
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
a: \(A=x^2-4=\left(x-2\right)\left(x+2\right)\)
Khi x=102 thì \(A=\left(102-2\right)\left(102+2\right)=104\cdot100=10400\)
b: \(B=x^2+6x+9=x^2+2\cdot x\cdot3+3^2=\left(x+3\right)^2\)
Khi x=997 thì \(B=\left(997+3\right)^2=1000^2=1000000\)
c: \(C=4x^2-4xy+y^2=\left(2x\right)^2-2\cdot2x\cdot y+y^2=\left(2x-y\right)^2\)
Khi x=39 và y=-2 thì \(C=\left(2\cdot39+2\right)^2=80^2=6400\)