K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(=\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{50.51:2}=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{100}\right)=2.\frac{49}{100}=\frac{49}{50}\)

=\(\frac{49}{50}\)

26 tháng 6 2017

Đây mà toán lớp 5 à.

Áp dụng công thức

\(\frac{1}{1+2+...+n}=\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2}{n\left(n+1\right)}\)  ta được

\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+....+50}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{49}{51}\)

26 tháng 6 2017

Ta có : \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.......+\frac{1}{1+2+3+......+50}\)

\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+......+\frac{1}{\frac{50.51}{2}}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{50.51}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{50.51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(=2.\frac{1}{2}-2.\frac{1}{51}\)

\(=1-\frac{2}{51}=\frac{49}{51}\)

11 tháng 3 2016

mình biết nè!

8 tháng 6 2019

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1275}\)

\(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right)\)

\(2\times(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51})\)

\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(2\times\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(2\times\frac{49}{102}\)

\(\frac{49}{51}\)

A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 +... + 1/1+2+3+...+50

A = 1/3 + 1/6 + 1/10 + 1/15 + ...+1/1275

Nhân cả hai vế với 1/2, ta có:

A/2 = 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/2550

A/2 = 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + ... + 1/50x51

A/2 = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +..... + 1/50 - 1/51

A/2 = 1-1/51

A/2 = 49/102

A = 49/51

15 tháng 8 2017

Đáp án là \(\frac{3}{5}\)đấy bạn !

12 tháng 8 2015

\(y=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+....+\frac{1}{1+2+3+...+49+50}=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1275}\)\(=2\cdot\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right)=2\cdot\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{50.51}\right)\)\(=2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)=2\cdot\left(\frac{1}{2}-\frac{1}{51}\right)=2\cdot\frac{49}{102}=\frac{49}{51}\)

5 tháng 4 2017

Tử số sau 1/9 là 2/10.Tối nay mình thử làm xem

3 tháng 7 2017

Quên mất, bảo tối hôm đó vào làm  :)). May là sang nay có ng k ms vào xem. Sorry

S=\(\frac{92-\left(1-\frac{8}{9}\right)-\left(1-\frac{8}{10}\right)-..-\left(1-\frac{8}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}=\frac{92-92+\left(\frac{8}{9}+\frac{8}{10}+...+\frac{8}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}\)

=\(\frac{8\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}=\frac{8}{\frac{1}{5}}=\frac{8.5}{1}=40\)

Vậy S=40