Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)
= \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1275}\)
= \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right)\)
= \(2\times(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51})\)
= \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{51}\right)\)
= \(2\times\frac{49}{102}\)
= \(\frac{49}{51}\)
A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 +... + 1/1+2+3+...+50
A = 1/3 + 1/6 + 1/10 + 1/15 + ...+1/1275
Nhân cả hai vế với 1/2, ta có:
A/2 = 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/2550
A/2 = 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + ... + 1/50x51
A/2 = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +..... + 1/50 - 1/51
A/2 = 1-1/51
A/2 = 49/102
A = 49/51
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Đây mà toán lớp 5 à.
Áp dụng công thức
\(\frac{1}{1+2+...+n}=\frac{1}{\frac{n\left(n+1\right)}{2}}=\frac{2}{n\left(n+1\right)}\) ta được
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+....+50}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)=\frac{49}{51}\)
Ta có : \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.......+\frac{1}{1+2+3+......+50}\)
\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+......+\frac{1}{\frac{50.51}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{50.51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{51}\)
\(=1-\frac{2}{51}=\frac{49}{51}\)
\(a.\)\(1\frac{2}{3}:\frac{2}{3}-\frac{3}{4}\cdot\frac{2}{3}+5\frac{3}{7}\)
\(=\frac{5}{3}:\frac{2}{3}-\frac{3}{4}\cdot\frac{2}{3}+\frac{38}{7}\)
\(=\frac{5}{3}\cdot\frac{3}{2}-\frac{3}{4}\cdot\frac{2}{3}+\frac{38}{7}\)
\(=\frac{5}{2}-\frac{1}{2}+\frac{38}{7}\)
\(=\frac{4}{2}+\frac{38}{7}\)
\(=2+\frac{38}{7}\)
\(=\frac{14}{7}+\frac{38}{7}\)
\(=\frac{52}{7}\)
\(b.1\frac{1}{3}-1\frac{1}{4}:1\frac{1}{2}+2\frac{3}{4}\cdot3\frac{2}{3}\)
\(=\frac{4}{3}-\frac{5}{4}:\frac{3}{2}+\frac{11}{4}\cdot\frac{11}{3}\)
\(=\frac{4}{3}-\frac{5}{4}\cdot\frac{2}{3}+\frac{11}{4}\cdot\frac{11}{3}\)
\(=\frac{4}{3}-\frac{5}{6}+\frac{121}{12}\)
\(=\frac{16}{12}-\frac{10}{12}+\frac{121}{12}\)
\(=\frac{6}{12}+\frac{121}{12}\)
\(=\frac{127}{12}\)
\(c.7\cdot\frac{2}{3}-\frac{2}{5}:\frac{1}{2}-\frac{2}{3}\)
\(=7\cdot\frac{2}{3}-\frac{2}{5}\cdot\frac{2}{1}-\frac{2}{3}\)
\(=7\cdot\frac{2}{3}-\frac{4}{5}-\frac{2}{3}\)
\(=\frac{14}{3}-\frac{4}{5}-\frac{2}{3}\)
\(=\frac{70}{15}-\frac{12}{15}-\frac{10}{15}\)
\(=\frac{58}{15}-\frac{10}{15}\)
\(=\frac{48}{15}=\frac{16}{5}\)
\(\frac{5}{3}:\frac{2}{3}-\frac{3}{4}\cdot\frac{2}{3}+\frac{38}{7}\)
\(\frac{5}{2}-\frac{1}{2}+\frac{38}{7}\)
\(2+\frac{38}{7}\)
\(\frac{52}{7}\)
\(=\frac{2}{2.\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+...+\)\(\frac{2}{2\left(1+2+...+50\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{2250}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{50.51}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(=2.\frac{49}{102}\)
\(=\frac{49}{51}\)
ở dãy 1 thì số đứng sau bằng tổng hai số đứng trước
ta có 5 số tiếp theo la 40,74, 136,...
\(\dfrac{3}{4}\times\dfrac{8}{5}:1\dfrac{1}{6}\)
=\(\dfrac{6}{5}:\) \(\dfrac{7}{6}\)
=\(\dfrac{6}{5}\times\dfrac{6}{7}=\dfrac{36}{35}\)
2\(\dfrac{1}{3}\) x 1\(\dfrac{1}{4}\) -\(\dfrac{7}{5}\)
\(\dfrac{7}{3}\times\dfrac{5}{4}-\) \(\dfrac{7}{5}\)
\(\dfrac{35}{12}-\dfrac{7}{5}\)
\(\dfrac{175}{60}-\dfrac{84}{60}=\dfrac{91}{60}\)
4\(\dfrac{2}{3}+1\dfrac{1}{4} +2\dfrac{1}{3}+2\dfrac{3}{7}\)
(4 +2) + \(\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\) +1\(\dfrac{1}{4}\) + \(2\dfrac{3}{7}\)
6 + 1 + \(\dfrac{5}{4}\) + \(\dfrac{17}{7}\)
7 + \(\dfrac{103}{28}\)
\(\dfrac{299}{28}\)
\(8\frac{7}{10}+2\frac{3}{4}=\frac{87}{10}+\frac{11}{4}=\frac{174}{20}+\frac{55}{20}=\frac{229}{20}\)
Bạn chỉ cần đưa về phân số xong tính bình thường. Muốn đổi từ hỗn số sang phân số, ta chỉ cần lấy phần nguyên nhân cho mẫu rồi cộng với tử là xong. Chứ bạn cứ hỏi mấy bài dễ như thế này thì k giỏi đc đâu!!!
1/2 + 1/3 = 2/6 + 3/6 = 5/6
1/2 + 1/3 + 1/4 = 5/6 + 1/4 = 20/24 + 6/24 = 13/12
1/2 + 1/3 + 1/4 + 1/5 = 13/12 + 1/5 =65/60 + 12/60 = 77/60
Đáp án là \(\frac{3}{5}\)đấy bạn !