K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

tính giá trị của biểu thức à bạn

11 tháng 3 2022

hình như thế

26 tháng 3 2020

(x^2 + 4x + 3)(x^2 + 6x + 8) = 24

<=> x^4 + 10x^3 + 35x^2 + 50x + 24 = 24

<=> x^4 + 10x^3 + 35x^2 + 50x = 0

<=> x(x + 5)(x^2 + 5x + 10) = 0

<=> x = 0 hoặc x + 5 = 0 hoặc x^2 + 5x + 10 khác 0

<=> x = 0 hoặc x = -5

1 tháng 10 2020

a, \(x^2-12x-2x+24=0\Leftrightarrow x^2-14x+24=0\Leftrightarrow\left(x-12\right)\left(x-2\right)=0\)

TH1 : x = 12 ; TH2 : x = 2 

b, \(x^2-5x-24=0\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

TH1 : x = 8 ; TH2 : x = -3 

c, \(4x^2-12x-7=0\Leftrightarrow\left(2x+1\right)\left(2x-7\right)=0\)

TH1 : x = -1/2 ; TH2 : x = 7/2

d, \(x^3+6x^2+12x+8=0\Leftrightarrow\left(x+2\right)^3=0\Leftrightarrow x=-2\)

Tương tự HĐT thôi :)

1 tháng 10 2020

a) x2 - 12x - 2x + 24 = 0

<=> x( x - 12 ) - 2( x - 12 ) = 0

<=> ( x - 12 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}x-12=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)

b) x2 - 5x - 24 = 0

<=> x2 + 3x - 8x - 24 = 0

<=> x( x + 3 ) - 8( x + 3 ) = 0

<=> ( x + 3 )( x - 8 ) = 0

<=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)

c) 4x2 - 12x - 7 = 0

<=> 4x2 + 2x - 14x - 7 = 0

<=> 2x( 2x + 1 ) - 7( 2x + 1 ) = 0

<=> ( 2x + 1 )( 2x - 7 ) = 0

<=> \(\orbr{\begin{cases}2x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)

d) x3 + 6x2 + 12x + 8 = 0

<=> ( x + 2 )3 = 0

<=> x + 2 = 0

<=> x = -2

e) ( x + 2 )2 - x2 + 4 = 0

<=> x2 + 4x + 4 - x2 + 4 = 0

<=> 4x + 8 = 0

<=> 4x = -8

<=> x = -2

f) 2( x + 5 ) = x2 + 5x

<=> x2 + 5x - 2x - 10 = 0

<=> x( x + 5 ) - 2( x + 5 ) = 0

<=> ( x + 5 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

m) 16( 2x - 3 )2 - 25( x - 5 )2 = 0

<=> 42( 2x - 3 )2 - 52( x - 5 )2 = 0

<=> [ 4( 2x - 3 ) ]2 - [ 5( x - 5 ) ]2 = 0

<=> ( 8x - 12 )2 - ( 5x - 25 )2 = 0

<=> [ 8x - 12 - ( 5x - 25 ) ][ 8x - 12 + ( 5x - 25 ) ] = 0

<=> ( 8x - 12 - 5x + 25 )( 8x - 12 + 5x - 25 ) = 0

<=> ( 3x + 13 )( 13x - 37 ) = 0

<=> \(\orbr{\begin{cases}3x+13=0\\13x-37=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)

n) x2 - 6x + 4 = 0

<=> ( x2 - 6x + 9 ) - 5 = 0

<=> ( x - 3 )2 - ( √5 )2 = 0

<=> ( x - 3 - √5 )( x - 3 + √5 ) = 0

<=> \(\orbr{\begin{cases}x-3-\sqrt{5}=0\\x-3+\sqrt{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)

1 tháng 10 2020

a) \(x^2-12x-2x+24=0\)

\(\Leftrightarrow x\left(x-12\right)-2\left(x-12\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)

b) \(x^2-5x-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)-\left(8x+24\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)

c) \(4x^2-12x-7=0\)

\(\Leftrightarrow\left(4x^2-14x\right)+\left(2x-7\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)

d) \(x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Rightarrow x=-2\)

1 tháng 10 2020

e) \(\left(x+2\right)^2-x^2+4=0\)

\(\Leftrightarrow4x+8=0\)

\(\Rightarrow x=-2\)

f) \(2\left(x+5\right)=x^2+5x\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

m) \(16\left(2x-3\right)^2-25\left(x-5\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}8x-12=5x-25\\8x-12=25-5x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=-13\\13x=37\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)

n) \(x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2-5=0\)

\(\Leftrightarrow\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)

Ta có: \(\left(x^2+4x+3\right)\left(x^2+6x+8\right)=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x+2\right)\left(x+4\right)=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)(1)

Ta có: \(1\cdot2\cdot3\cdot4=24\)(2)

Từ (1) và (2) suy ra \(\left\{{}\begin{matrix}x+1=1\\x+2=2\\x+3=3\\x+4=4\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

24 tháng 3 2020

Sai từ chỗ (1)

(1)\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)(2)

Đặt \(y=x^2+5x+4=\left(x+1\right)\left(x+4\right)\)

\(\left(1\right)\Leftrightarrow y^2+2y-24=0\)

\(\Leftrightarrow\left(y-4\right)\left(y+6\right)=0\Rightarrow\left[{}\begin{matrix}y=4\\y=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\end{matrix}\right.\)

Vậy x=0 hoặc x=-5

a) \(x^3-4x^2-8x+8\)

\(=x^3+8-4x^2-8x\)

\(=\left(x+2\right)\left(x^2-2x+4\right)-4x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x+4-4x\right)\)

\(=\left(x+2\right)\left(x^2-6x+4\right)\)

\(=\left(x+2\right)\left(x^2-6x+9-5\right)\)

\(=\left(x+2\right)\left[\left(x-3\right)^2-5\right]\)

\(=\left(x+2\right)\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\)

b) \(1+6x-6x^2-x\)

\(=1-x+6x\left(1-x\right)\)

\(=\left(1-x\right)\left(6x+1\right)\)

bằng phương pháp nào zậy bn????

547675675675678768768789980957457346242645657

20 tháng 11 2016

a) \(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=\left[\left(x+8\right)-\left(x-2\right)\right]^2\)

\(=\left(x+8-x+2\right)^2\)

\(=10^2\)

\(=2^2.5^2\)

b)\(x^3-4x^2-12x+27=\left(x^3+27\right)-\left(4x^2+12x\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+9-4x\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

c)\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)

\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)

\(=\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

d)\(x^3+6x^2-13x-42=x^3-3x^2+9x^2-27x+14x-42\)

\(=x^2\left(x-3\right)+9x\left(x-3\right)+14\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+9x+14\right)\)

\(=\left(x-3\right)\left(x^2+2x+7x+14\right)\)

\(=\left(x-3\right)\left[x\left(x+2\right)+7\left(x+2\right)\right]\)

\(=\left(x-3\right)\left(x+2\right)\left(x+7\right)\)