K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Bài giải:

Theo hình vẽ, ta có: AB = 2cm, CD = 4cm

Trong tam giác vuông AED, áp dụng định lý Pitago ta được:

AD2 = AE2 + ED2

= 32 + 12 =10

Suy ra AD = 1010cm

Vậy AB = 2cm, CD = 4cm, AD = BC = 1010cm

26 tháng 10 2017

A B C H D

Áp dụng định lí Pitago :

\(AD^2 = AH^2 + DH^2\)

\(= 3^2 + 1^2\)

\(= 10\)

\(\Rightarrow AD=\sqrt{10}\)

Vậy \(AB = 2cm\);\(CD = 4cm\);\(AD=BC=\sqrt{10}\)

13 tháng 8 2019

Giải bài 11 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

(Mỗi ô vuông là 1cm).

Nhìn vào hình vẽ ta thấy :

+ AB = 2cm

+ CD = 4cm.

+ Tính AD :

Xét tam giác vuông ADE có AE = 1cm, DE = 3cm.

⇒ AD2 = AE2 + DE2 (Định lý Pytago)

= 12 + 32 = 10

⇒ AD = √10 cm

+ Tính BC :

ABCD là hình thang cân nên BC = AD = √10 cm.

Vậy AB = 2cm, CD = 4cm, AD = BC = √10 cm.

21 tháng 4 2017

Bài giải:

Để xét xem tứ giác nào là hình thang cân ta dùng tính chất

"Trong hình thang cân hai cạnh bên bằng nhau"

Tứ giác ABCD là hình thang cân vì có AD = BC.

Tứ giác EFGH không là hình thang cân vì EF > GH.

21 tháng 4 2017

Để xét xem tứ giác nào là hình thang cân ta dùng tính chất

"Trong hình thang cân hai cạnh bên bằng nhau"

Tứ giác ABCD là hình thang cân vì có AD = BC.

Tứ giác EFGH không là hình thang cân vì EF > GH.

Xin lỗi bn mink mới học có lớp 5 thôi à nên MINK ko thể giúp bn,  xin lỗi nha 

8 tháng 7 2017

Mk mới học lớp 6 thôi nên mk ko giúp được bạn . Sorry nha !

30 tháng 6 2017

Hình bình hành

21 tháng 4 2017

Cả ba tứ giác là hình bình hành.

- Tứ giác ABCD là hình bình hành vì có

AB // CD và AB = CD =3 (dấu hiệu nhận biết 3)

- Tứ giác EFGH là hình bình hành vì có

EH // FG và EH = FH = 3 (dấu hiệu nhận biết 3)

- Tứ giác MNPQ là hình bình hành vì có MN = QP và MQ = NP (dấu hiệu nhận biết 2)

21 tháng 4 2017

Bài giải:

Cột thứ hai:

d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169

Nên d = 13

Cột thứ ba:

a2 + b2 = d2 => a2 = d2 – b2=(√1010)2 - (√66)2

a2 = 10 – 6 = 4 => a = 2

Cột thứ tư:

a2 + b2 = d2 => b2 = d2 - a2 = 72 - (√1313)2

b2 = 49 – 13 = 36 => b = 6

13 tháng 10 2017

Cột thứ hai:

d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169

Nên d = 13

Cột thứ ba:

a2 + b2 = d2 => a2 = d2 – b2=(√1010)2 - (√66)2

a2 = 10 – 6 = 4 => a = 2

Cột thứ tư:

a2 + b2 = d2 => b2 = d2 - a2 = 72 - (√1313)2

b2 = 49 – 13 = 36 => b = 6


21 tháng 4 2017

Bài giải:

Có thể tìm được hai điểm M là giao điểm của các dòng kẻ sao cho nó cùng với ba điểm đã cho A, D, K là bốn đỉnh của một hình thang cân. Đó là hình thang AKDM1 (với AK là đáy) và hình thang ADKM2 (với DK là đáy).

8 tháng 9 2017

Có 5 hình cơ anh à =)

30 tháng 5 2017

\(AB^2 + AC^2 = 25^2 = 625\)

\(AD^2 + 81 = AB^2\)

\(AD^2 + 256 = AC^2\)

\(=> AD^2 + 81 + AD^2 + 256 = 625\)

=> \(2AD^2 = 288\)

=> \(AD^2 = 144\)

=> AD = 12(cm)

=>\( AB^2 = 9^2 + 12^2 = 225\)

=> AB = 15 (cm)

=> \(AC^2 = 12^2 + 16^2 = 400\)

=> AC = 20(cm)

và BC = 25(cm)

27 tháng 5 2017

Hỏi đáp Toán

Ta có: \(BC=BD+DC=9+16=25\left(cm\right)\)

Xét \(\Delta DBA\)\(\Delta ABC\):

\(\widehat{A}=\widehat{D}\left(=90^o\right)\)

\(\widehat{B}=\widehat{A_2}\)(cùng phụ với góc\(A_1\))

\(\Rightarrow\Delta DBA\)~\(\Delta ABC\)

\(\Rightarrow\dfrac{DB}{AB}=\dfrac{AB}{BC}\Leftrightarrow AB^2=DB.BC=9.25=225\Rightarrow AB=15\left(cm\right)\)

Áp dụng định lý Py-ta-go cho tam giác vuông ABC, có:

\(AB^2+AC^2=BC^2\Leftrightarrow15^2+AC^2=25^2\Rightarrow AC=\sqrt{25^2-15^2}=20\)

Vậy các cạnh của tam giác vuông ABC lần lượt là: \(15;20;25\)