Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
Theo hình vẽ, ta có: AB = 2cm, CD = 4cm
Trong tam giác vuông AED, áp dụng định lý Pitago ta được:
AD2 = AE2 + ED2
= 32 + 12 =10
Suy ra AD = √1010cm
Vậy AB = 2cm, CD = 4cm, AD = BC = √1010cm
A B C H D
Áp dụng định lí Pitago :
\(AD^2 = AH^2 + DH^2\)
\(= 3^2 + 1^2\)
\(= 10\)
\(\Rightarrow AD=\sqrt{10}\)
Vậy \(AB = 2cm\);\(CD = 4cm\);\(AD=BC=\sqrt{10}\)
l | 25 | 8 | 15 | 8 |
v | 20 | 4 | 12 | 6 |
h | 10 | 6 | 4 | 12 |
Sxq | 900 | 144 | 216 | 336 |
Stp | 1900 | 208 | 576 | 432 |
V | 5000 | 192 | 720 | 576 |
a | 9 | 35 | 20 | 63 | 28 |
b | 40 | 12 | 21 | 16 | 45 |
c | 41 | 37 | 29 | 65 | 53 |
h | 8 | 18 | 17 | 24 | 13 |
Diện tích 1 đáy | 180 | 210 | 210 | 504 | 630 |
Diện tích xung quanh | 720 | 1512 | 1190 | 3456 | 1638 |
Diện tích toàn phần | 1080 | 1932 | 1610 | 4464 | 2898 |
Thể tích | 1440 | 3780 | 3570 | 12096 | 8190 |
Ta có:
\(\widehat{ABC}=\widehat{ADC}\) và AD = BC = b = 7,25cm vì ABCD là hình bình hành.
Xét hai tam giác ADF và CBE ta có:
\(\widehat{ABC}=\widehat{ADC}\) (cmt)
AD = BC (cmt)
\(\widehat{DAF}=\widehat{BCE}\) (2 góc so le trong)
Vậy \(\Delta ADF=\Delta CBE\) (g-c-g).
=> AF = CE.
Cho AF = CE = x.
Áp dụng tính chất của đường phân giác BE trong tam giác ABC ta có:
\(\dfrac{AB}{BC}=\dfrac{AE}{CE}=\dfrac{AF+FE}{CE}\)
=> \(\dfrac{a}{b}=\dfrac{x+m}{x}=>x=\dfrac{mb}{a-b}\)= \(\dfrac{3,45.7,25}{12,5-7,25}=\dfrac{667}{140}\)
=> AC = \(2x+m=2.\dfrac{667}{140}+3,45=\dfrac{1817}{140}\approx12,98\)
Vậy AC \(\approx12,98\) cm.
Tham khảo:
a. Những cặp mặt phẳng song song với nhau là:
mp (ABCD) và mp (XYHK)
mp (ADKX) và mp (BCHY)
mp (ABYX) và mp (CDKH)
b. Những cặp mặt phẳng vuông góc với nhau là:
mp (ABCD) và mp (ADKX); mp (XYHK) và mp (ADKX)
mp (ABCD) và mp (ABYX); mp (XYHK) và mp (ABYX)
mp (ABCD) và mp (BCHY); mp (XYHK) và mp (BCHY)
mp (ABCD) và mp (CDKH); mp (XYHK) và mp (CDKH)
mp (ADKX) và mp (CDKH); mp (ADKX) và mp (ABYX)
mp (BCHY) và mp (CDKH); mp (BCHY) và mp (ABYX)
c. Hai mặt phẳng (BCHY) và (KXYH) vuông góc với nhau.
d:
Bài giải:
Cột thứ hai:
d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169
Nên d = 13
Cột thứ ba:
a2 + b2 = d2 => a2 = d2 – b2=(√1010)2 - (√66)2
a2 = 10 – 6 = 4 => a = 2
Cột thứ tư:
a2 + b2 = d2 => b2 = d2 - a2 = 72 - (√1313)2
b2 = 49 – 13 = 36 => b = 6
Cột thứ hai:
d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169
Nên d = 13
Cột thứ ba:
a2 + b2 = d2 => a2 = d2 – b2=(√1010)2 - (√66)2
a2 = 10 – 6 = 4 => a = 2
Cột thứ tư:
a2 + b2 = d2 => b2 = d2 - a2 = 72 - (√1313)2
b2 = 49 – 13 = 36 => b = 6