K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

Giải bài 11 trang 74 Toán 8 Tập 1 | Giải bài tập Toán 8

(Mỗi ô vuông là 1cm).

Nhìn vào hình vẽ ta thấy :

+ AB = 2cm

+ CD = 4cm.

+ Tính AD :

Xét tam giác vuông ADE có AE = 1cm, DE = 3cm.

⇒ AD2 = AE2 + DE2 (Định lý Pytago)

= 12 + 32 = 10

⇒ AD = √10 cm

+ Tính BC :

ABCD là hình thang cân nên BC = AD = √10 cm.

Vậy AB = 2cm, CD = 4cm, AD = BC = √10 cm.

21 tháng 4 2017

Bài giải:

Theo hình vẽ, ta có: AB = 2cm, CD = 4cm

Trong tam giác vuông AED, áp dụng định lý Pitago ta được:

AD2 = AE2 + ED2

= 32 + 12 =10

Suy ra AD = 1010cm

Vậy AB = 2cm, CD = 4cm, AD = BC = 1010cm

26 tháng 10 2017

A B C H D

Áp dụng định lí Pitago :

\(AD^2 = AH^2 + DH^2\)

\(= 3^2 + 1^2\)

\(= 10\)

\(\Rightarrow AD=\sqrt{10}\)

Vậy \(AB = 2cm\);\(CD = 4cm\);\(AD=BC=\sqrt{10}\)

Xin lỗi bn mink mới học có lớp 5 thôi à nên MINK ko thể giúp bn,  xin lỗi nha 

8 tháng 7 2017

Mk mới học lớp 6 thôi nên mk ko giúp được bạn . Sorry nha !

19 tháng 9 2021

thank bn nhiều nhiều <:33

 

26 tháng 2 2020

Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chúc bạn học tốt~~

26 tháng 2 2020

A B C K H I

a) Xét hai Δvuông HBC và ΔKCB

∠BCH = ∠CBK (Δ ABC cân tại A) BC cạnh chung

⇒ ΔHBC = ΔKCB (cạnh huyền, góc nhọn)

⇒ CH = BK

b) Ta có: AB = AC (ΔABC cân tại A) và CH = BK

- Quảng cáo -

AK = AB – BK và AH = AC – CH ⇒ AK = AH

⇒ AK/AB = AH/AC ⇒ KH//BC

c) Kẻ đường cao AI của Δ ABC và xét Δ IAC

ΔHBC có ∠ACI = ∠BCH

⇒ ΔIAC ∽ ΔHBC(g.g) ⇒ AC/BC = IC/HC ⇒ HC = IC.BC / AC = a2/2b

Ta có : \(KH//BC\Rightarrow\frac{KH}{BC}=\frac{AH}{AC}\)

\(\Rightarrow KH=\frac{AH.BC}{AC}=\frac{\left(AC-HC\right).BC}{AC}\)

\(\Rightarrow KH=\left(b-\frac{a^2}{2b}\right)\frac{a}{b}=a-\frac{a^3}{2b^2}\)

8 tháng 10 2019

Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.

Giải bài 64 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

 
8 tháng 10 2019

Theo giả thiết ABCD là hình bình hành nên ta có:

ˆDAB=ˆDCB,ˆADC=ˆABC         (1)

Theo định lí tổng các góc của một tứ giác ta có:

ˆDAB+ˆDCB+ˆADC+ˆABC=360o                (2)

Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o

Vì AG là tia phân giác ˆDAB (giả thiết)

⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)

Vì BG là tia phân giác ˆABC (giả thiết)

⇒⇒  ˆABG=1/2ˆABC

Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o

Xét ΔAGB= có:

ˆBAG+ˆABG=90o   (3)

Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:

ˆBAG+ˆABG+ˆAGB=180o            (4)

Từ (3) và (4) ⇒ˆAGB=90o      

Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o

Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

9 tháng 10 2017

1) a) Do ABCD là hình thang cân => góc D = góc C ; góc B = góc A 

Trong t/g ABC có : góc A = 90 độ => góc D + góc C2 = 90 độ 

Trong t/g ABC có AB = BC ( gt ) => t/g ABC cân tại B => góc A1 = góc C1 

Ta có góc A = 90 độ + góc A1 = góc D + góc C2 + góc C1 = góc C + góc C = 2C 

Mà : 

A + B + C + D = 360 độ = 2A + 2C = 4C + 2C = 6C => góc C = 360 độ : 6 = 60 độ 

=> góc C = góc D ( = 60 độ ) ; góc A = góc B ( = 120 độ ) 

9 tháng 10 2017

mk ko biết