Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài hình chữ nhật ban đầu là \(x\left(m\right),x>0\).
Chiều rộng là: \(\frac{300}{x}\left(m\right)\)
Chiều rộng mới là: \(\frac{300}{x}-3\left(m\right)\)
Chiều dài mới là: \(x+5\left(m\right)\)
Ta có: \(\left(x+5\right)\left(\frac{300}{x}-3\right)=300\)
\(\Leftrightarrow300-3x+\frac{1500}{x}-15=300\)
\(\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-25\left(l\right)\end{cases}}\)
Vậy chiều dài ban đầu là \(20m\)chiều rộng ban đầu là \(15m\).
- Gọi chiều dài và chiều rộng thửa ruộng lần lượt là \(x,y\left(x,y\in N\cdot\right)\)
- Diện tích ban đầu thửa ruộng đó là : xy ( m2 )
Theo bài ra sau khi tăng chiều dài thêm 2m và tăngchiều rộng thêm 3m thì diện tích tăng thêm 100m2 .
Nên ta có phương trình :\(\left(x+2\right)\left(y+3\right)=xy+100\)
\(\Leftrightarrow xy+3x+2y+6=xy+100\)
\(\Leftrightarrow3x+2y=94\left(I\right)\)
Lại có theo bài ra nếu cùng giảm cả chiều dài và chiều rộngđi 2m thì diện tích giảm đi 68m2.
Nên ta có phương trình : \(\left(x-2\right)\left(y-2\right)=xy-68\)
\(\Leftrightarrow xy-2x-2y+4=xy-68\)
\(\Leftrightarrow x+y=36\left(II\right)\)
- Giai hệ phương trình tạo từ ( I ) và ( II ) ta được : \(\left\{{}\begin{matrix}x=22\\y=14\end{matrix}\right.\) ( TM )
Vậy diện tích mảnh ruộng đó là : 308 ( m2 ) .
Gọi chiều dài và chiều rộng của thửa ruộng lần lượt là a(m) và b(m)(Điều kiện: a>0; b>0; \(a\ge b\))
Diện tích ban đầu của thửa ruộng là:
\(ab\left(m^2\right)\)
Vì nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m thì diện tích tăng thêm \(100m^2\) nên ta có phương trình:
\(\left(a+2\right)\left(b+3\right)=ab+100\)
\(\Leftrightarrow ab+3a+2b+6-ab-100=0\)
\(\Leftrightarrow3a+2b-94=0\)
\(\Leftrightarrow3a+2b=94\)(1)
Vì khi cùng giảm cả chiều dài và chiều rộng đi 2m thì diện tích giảm đi \(68m^2\) nên ta có phương trình:
\(\left(a-2\right)\left(b-2\right)=ab-68\)
\(\Leftrightarrow ab-2a-2b+4-ab+68=0\)
\(\Leftrightarrow-2a-2b+72=0\)
\(\Leftrightarrow-2a-2b=-72\)
\(\Leftrightarrow a+b=36\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a+2b=94\\a+b=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+2b=94\\3a+3b=108\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-14\\a+b=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=36-b=36-14=22\\b=14\end{matrix}\right.\)(thỏa ĐK)
Diện tích của thửa ruộng là:
\(S=a\cdot b=14\cdot22=308\left(m^2\right)\)
Gọi chiều dài,chiều rộng lần lượt là a,b
Theo đề, ta có: (a+2)(b-3)=ab+100 và (a-2)(b-2)=ab-68
=>-3a+2b=106 và -2a-2b=-64
=>a=-42/5
=>Đề sai rồi bạn
Gọi chiều dài và chiều rộng lầ lượt là x và y (x>y; x,y <59)
Chu vi là 118m nên ta có PT: x+y=59 (1)
Nếu giảm chiều dài đi 5m và tăng chiều rộng thêm 3m thì diện tích giảm đi 14m2 nên ta có PT:
xy-(x-5)(y+3)=14
⇔xy-xy-3x+5y+15=14
⇔-3x+5y=-1 (2)
Từ (1) và (2) có HPT: \(\left\{{}\begin{matrix}x+y=59\\-3x+5y=-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=37\\y=22\end{matrix}\right.\)(TM)
Vậy...
Nửa chu vi mảnh vườn HCN: 118:2=59(m)
Gọi a là độ dài chiều dài mảnh vườn. (0<a<59) (m)
=> Độ dài chiều rộng mảnh vườn: 59-a (m)
=> Diện tích thực tế mảnh vườn: (59-a).a (m2) (1)
* Giả sử tăng chiều rộng thêm 3m và giảm chiều dài đi 5m ,diện tích mảnh vườn lúc đó bằng: (a-5).(59-a+3)=(a-5).(62-a) (m2)
* Vì diện tích giả sử lớn hơn diện tích thực tế 14m2. Nên ta có phương trình:
(59-a).a=[(a-5).(62-a)] +14
<=> -a2 + 59a +a2 -67a = -296
<=> -8a= -296
<=>a=37 (TM)
-> Chiều dài mảnh vườn là 37(m), rộng là 59-37=22(m)
Diện tích của mảnh vườn: 37 x 22= 814(m2)