K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 1 2022

Gọi chiều dài hình chữ nhật ban đầu là \(x\left(m\right),x>0\).

Chiều rộng là: \(\frac{300}{x}\left(m\right)\)

Chiều rộng mới là: \(\frac{300}{x}-3\left(m\right)\)

Chiều dài mới là: \(x+5\left(m\right)\)

Ta có: \(\left(x+5\right)\left(\frac{300}{x}-3\right)=300\)

\(\Leftrightarrow300-3x+\frac{1500}{x}-15=300\)

\(\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-25\left(l\right)\end{cases}}\)

Vậy chiều dài ban đầu là \(20m\)chiều rộng ban đầu  là \(15m\).

1500 đâu ra vậy bạn

18 tháng 1 2016

jup xem nào tui chơi bang bang nè

25 tháng 1 2022
25 tháng 1 2022

loading...

 

Gọi chiều rộng là x

Chiều dài là 2x

Theo đề, ta có: (2x-3)(x+2)=x2

=>2x2+4x-3x-6=x2

=>x2+x-6=0

=>(x+3)(x-2)=0

=>x=-3(loại) hoặc x=2(nhận)

Vậy: Chiều dài là 4m

Lời giải:

Giả sử độ dài chiều rộng HCN là aa (m) (a>2) thì độ dài chiều dài HCN là 2a (m)

Khi giảm mỗi chiều đi 22 (m), độ dài các cạnh hình chữ nhật còn lại a−2a−2 (m) và 2a−2 (m)

Diện tích ban đầu: S=a.2a=2a2 (m vuông)

Diện tích sau khi thay đổi kích thước: S′=(a−2)(2a−2)(m vuông)

Theo đề bài: S=2S′

⇔2a2=2(a−2)(2a−2)

⇔a2=(a−2)(2a−2)=2a2−6a+4

⇔a2−6a+4=0

⇒a=3±√5(m). Mà a>2nên a=3+√5 (m)

Do đó chiều dài HCN đã cho là: 2a=6+2√ (m)

13 tháng 5 2022

Gọi \(x\left(m\right)\) là chiều rộng của hình chữ nhật ban đầu \(\left(x>0\right)\)

Vì hình chữ nhật ban đầu có diện tích bằng 120m2 nên chiều dài của hình chữ nhật ban đầu là \(\dfrac{120}{x}\left(m\right)\)

Từ đây ta giới hạn điều kiện của \(x\): \(\dfrac{120}{x}>x\Leftrightarrow x^2< 120\Leftrightarrow x< 2\sqrt{30}\) (vì \(x>0\) nên nhân cả 2 vế của BPT với x thì BPT không đổi chiều) từ đó \(0< x< 2\sqrt{30}\)

Chiều rộng lúc sau là \(x+2\left(m\right)\)

Chiều dài lúc sau là \(\dfrac{120}{x}-5\left(m\right)\)

Vì hình lúc sau là 1 hình vuông nên ta có pt \(x+2=\dfrac{120}{x}-5\)\(\Leftrightarrow x+7-\dfrac{120}{x}=0\) \(\Rightarrow x^2+7x-120=0\) (1)

pt (1) có \(\Delta=7^2-4.1.\left(-120\right)=529>0\)

Vậy (1) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-7+\sqrt{529}}{2}=8\left(nhận\right)\\x_2=\dfrac{-7-\sqrt{529}}{2}=-15\left(loại\right)\end{matrix}\right.\)

Do đó chiều rộng của hình chữ nhật là 8m, chiều dài hình chữ nhật là \(\dfrac{120}{8}=15\left(m\right)\)

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của hình chữ nhật(Điều kiện: a>0; b>0 và \(a\ge b\))

Vì chiều dài hơn chiều rộng 5m nên ta có phương trình: a-b=5(1)

Diện tích ban đầu của hình chữ nhật là:

\(ab\left(m^2\right)\)

Vì khi giảm chiều dài đi 2m và tăng chiều rộng gấp đôi thì diện tích lớn hơn diện tích ban đầu 240m2 nên ta có phương trình:

\(\left(a-2\right)\cdot2b=ab+240\)

\(\Leftrightarrow2ab-4b=ab+240\)

\(\Leftrightarrow ab-4b=240\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-b=5\\ab-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b\left(5+b\right)-4b=240\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\5b+b^2-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b^2+b-240=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b^2+16b-15b-240=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+16\right)-15\left(b+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+16\right)\left(b-15\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b+16=0\\b-15=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b=-16\left(loại\right)\\b=15\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài ban đầu là 20m; Chiều rộng ban đầu là 15m

gọi chiều dài hcn là x (m) ( x > 8 )

\(\Rightarrow\)chiều rộng hcn là x-8(m)

theo bài ra ta có pt

( x-8+2) (x - 5 )= 210

(x-6)(x-5)=210

x2 - 11x + 30=210

x2 - 11x - 180= 0

\(\Delta\)= 121 + 4 . 180=841 

\(\Rightarrow\)pt có 2 nghiệm pb x1 = \(\frac{11+\sqrt{841}}{2}\)=20 ( TM)

                                       x2\(\frac{11-\sqrt{841}}{2}\)=-9(KTM)

vậy......

#mã mã#

29 tháng 4 2019

mơn nhìu nha

4 tháng 12 2021
quangcuong34726/02/2020

Gọi a là chiều dài, b là chiều rộng (a, b m; a> b > 0) 

Diện tích HCN là S= ab

Nếu tăng mỗi cạnh lên 5m thì S tăng 225 m2m2 

=> (a+5)(b+5)= ab+ 225 

<=> ab+ 5a+ 5b+ 25= ab+ 225 

<=> a+b= 40          (1) 

Nếu tăng chiều rộng 2m, giảm chiều dài 5m thì S không đổi  

=> (a-5)(b+2)= ab 

<=> ab+ 2a - 5b -10= ab 

<=> 2a - 5b= 10     (2) 

(1)(2) => a= 30; b= 10 (TM)

Vậy chu vi HCN là (30+10).2= 80m

 

  
18 tháng 5 2021

Gọi chiều dài chiều rộng ban đầu của hình chữ nhật là: x;y (m) 

ĐK : x>5; y > 0 , x >y 

Chiều dài của hình chữ nhật khi giảm đi 5m là : x - 5 (m)

Chiều rộng tăng 2m nên ta có chiều rộng lúc sau là : y + 2 (m)

Vì nếu tăng chiều rộng 2m và giảm chiều dài 5m thì thu được 1 hình vuông nên ta có : 

                   x - 5 = y + 2

               <=> x - y = 7 (1)

Diện tích hình chữ nhật ban đầu là: xy = 120(m²) (2)

Từ (1) và (2) ta có hệ :

         x - y = 7 và xy = 120 (thế)

Giải hệ ta được x = 15(TMDK ẩn)

                          y = 8(TMDK ẩn)

Vậy chiều dài và chiều rộng của hình chữu nhật đó lần lượt là 15m và 8m

18 tháng 5 2021

Tham khảo

Gọi chiều dài của hình chữ nhật là a(m)

Chiều rộng của hình chữ nhật là b(m) Với 0<b<a<120

Theo đề bài:

Diện tích của hcn là 120m^2 => ab=120m^2 (1)

Tăng chiều rộng giảm chiều dài chứ nhỉ?

Nếu tăng chiều rộng 2m và giảm chiều dài 5m thì được hình vuông =>b+2=a-5

\(\left\{{}\begin{matrix}b+2=a-5\\ab=120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-7\\ab=120\end{matrix}\right.\)

⇒a\(^2\)-7a-120=0

(a−15)(a+8)=0⇒a=15⇒b=8