K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

\(D=\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2014}}\)

\(D=\frac{2.2014}{\frac{2}{2}+\frac{1}{\frac{2.3}{2}}+...+\frac{1}{\frac{2015.2014}{2}}}\)

\(D=\frac{2.2014}{\frac{2}{2}+\frac{2}{2.3}+...+\frac{2}{2014.2015}}\)

\(D=\frac{2015}{\frac{1}{2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}}\)

\(D=\frac{2014}{\frac{1}{2}+\frac{1}{2}-\frac{1}{2015}}\)

4 tháng 8 2018

\(D=\frac{2.2014}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}}\)

\(D=\frac{2.2014}{\frac{1}{\frac{\left(1+1\right).1}{2}}+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2014+1\right).2014}{2}}}\)

\(D=\frac{2.2014}{\frac{2}{1.2}+\frac{2}{3.2}+\frac{2}{4.3}+\frac{2}{2015.2014}}\)

\(D=\frac{2.2014}{2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)}\)

\(D=\frac{2014}{\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)}\)

\(D=\frac{2014}{\left(1-\frac{1}{2015}\right)}\)

\(D=\frac{2014}{\frac{2014}{2015}}\)

\(D=\frac{2014.2015}{2014}\)

\(D=2015\)

Tham khảo nhé~

DD
27 tháng 5 2021

\(S=2014+\frac{2014}{1+2}+\frac{2014}{1+2+3}+...+\frac{2014}{1+2+3+...+10000}\)

\(S=\frac{2014}{\frac{1.2}{2}}+\frac{2014}{\frac{2.3}{2}}+\frac{2014}{\frac{3.4}{2}}+...+\frac{2014}{\frac{10000.10001}{2}}\)

\(S=\frac{4028}{1.2}+\frac{4028}{2.3}+\frac{4028}{3.4}+...+\frac{4028}{10000.10001}\)

\(S=4028\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10000.10001}\right)\)

\(S=4028\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{10001-10000}{10000.10001}\right)\)

\(S=4028\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10000}-\frac{1}{10001}\right)\)

\(S=4028\left(1-\frac{1}{10001}\right)=\frac{40280000}{10001}\)

10 tháng 11 2016

\(D=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)

\(=\frac{2013}{2014}\)

12 tháng 2 2017

2013/2014

3 tháng 12 2015

\(\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

=1/2-1/2015=2013/4030

=>A=2013/2015

tick nhé

21 tháng 12 2015

\(a_{n-1}=\frac{2}{n\left(n+1\right)}=\frac{2}{n}+\frac{2}{n+1}\)

\(A=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+\frac{2}{4}-\frac{2}{5}+.......+\frac{2}{2014}-\frac{2}{2015}=1-\frac{2}{2015}=\frac{2013}{2015}\)

20 tháng 12 2015

rảnh quá ngồi bấm, nếu bấm máy tính thì tự ngồi tạo công thức chứ rảnh ghê

9 tháng 4 2016

22=4

32=9

42=16

52=25

...

20142=4056196

Ta có :

4=2.2

9=3.3

16=4.4

25=5.5

...

4056196=2014.2014

tự làm tiếp

20 tháng 3 2017

Đặt \(A=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.......+\frac{2}{2015}+\frac{1}{2016}\)

\(=\frac{2015}{2}+1+\frac{2014}{3}+1+...........+\frac{1}{2015}+1\)

\(=\frac{2017}{2}+\frac{2017}{3}+.........+\frac{2017}{2015}+\frac{2017}{2016}\)

\(=2017.\left(\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2015}+\frac{1}{2016}\right)\)

Thay A vào biểu thức ta dc

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2017}}{A}\)

\(=\frac{\frac{1}{2017}}{2017}\)\(=1\)

CÓ THỂ LÀ SAI NÊN BẠ THÔNG CẢM CHO MK

20 tháng 3 2017

sai rôi bạn ơi