K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Đặt N=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+......+\dfrac{1}{5^{100}}\)

5N=\(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+..........+\dfrac{1}{5^{99}}\)

5N-N= \(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+.............+\dfrac{1}{5^{99}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+..........+\dfrac{1}{5^{100}}\right)\)

4N=1-\(\dfrac{1}{5^{100}}\) =\(\dfrac{5^{100}-1}{5^{100}}\)

N=\(\dfrac{5^{100}-1}{4.5^{100}}\)

Thay N vào D ,ta có

D= 4.5\(^{100}\).(\(\dfrac{5^{100}-1}{4.5^{100}}\) )+1

D=5\(^{100}\)

Vậy D =5\(^{100}\)

thank nha, "Thiên Nhi"vuivuivui

15 tháng 4 2017

2P=\(\dfrac{2}{2}+\dfrac{2}{2^2}+...+\dfrac{2}{2^{100}}\)

2P=\(1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)

2P-P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)

P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)

24 tháng 4 2017

\(P=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)

\(2P=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)\(\)

\(2P-P=1-\dfrac{1}{2^{100}}\)

\(P=\dfrac{2^{100}}{2^{100}}-\dfrac{1}{2^{100}}\)

\(P=\dfrac{2^{100}-1}{2^{100}}\)

6 tháng 5 2022

Đặt biểu thức trong ngoặc đơn là B

\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{98}}+\dfrac{1}{5^{99}}\)

\(\Rightarrow4B=5B-B=1-\dfrac{1}{5^{100}}\Rightarrow B=\dfrac{1}{4}\left(1-\dfrac{1}{5^{100}}\right)\)

\(\Rightarrow A=4.5^{100}.\dfrac{1}{4}\left(\dfrac{5^{100}-1}{5^{100}}\right)+1=\)

\(=5^{100}\)

14 tháng 4 2022

Đặt `B=1/5+1/5^{2}+1/5^{3}+...+1/5^{101}`

`<=>5B=1+1/5+1/5^{2}+...+1/5^{100}`

`<=>5B-B=(1+1/5+1/5^{2}+...+1/5^{100})-(1/5+1/5^{2}+...+1/5^{101})`

`<=>5B-B=1+1/5+1/5^{2}+...+1/5^{100}-1/5-1/5^{2}-...-1/5^{101}`

`<=>4B=1-1/5^{101}`

`<=>B=(1-1/5^{101})/4`

`@Shả`

14 tháng 4 2022

\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{101}}\)

\(5A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{100}}\)

\(5A-A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{100}}-\dfrac{1}{5}-\dfrac{1}{5^2}-...-\dfrac{1}{5^{101}}=1-\dfrac{1}{5^{101}}\Rightarrow A=\dfrac{1-\dfrac{1}{5^{101}}}{4}\)

7 tháng 5 2017

lầy dạ??

23 tháng 2 2021

\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)

\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)