Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2P=\(\dfrac{2}{2}+\dfrac{2}{2^2}+...+\dfrac{2}{2^{100}}\)
2P=\(1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)
2P-P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)
P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)
\(P=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(2P=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)\(\)
\(2P-P=1-\dfrac{1}{2^{100}}\)
\(P=\dfrac{2^{100}}{2^{100}}-\dfrac{1}{2^{100}}\)
\(P=\dfrac{2^{100}-1}{2^{100}}\)
Ta có :
\(D=\dfrac{1}{5}-\dfrac{1}{5^2}+\dfrac{1}{5^3}-\dfrac{1}{5^4}+\dfrac{1}{5^5}-..........-\dfrac{1}{5^{100}}+\dfrac{1}{5^{101}}\)
\(5D=1-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+\dfrac{1}{5^4}-\dfrac{1}{5^5}+..........+\dfrac{1}{5^{100}}\)
\(5D+D=\left(1-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+.........+\dfrac{1}{5^{100}}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5^2}+..............-\dfrac{1}{5^{100}}+\dfrac{1}{5^{101}}\right)\)\(6D=1-\dfrac{1}{5^{101}}\)
\(D=\dfrac{1-\dfrac{1}{5^{101}}}{6}\)
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
\(a)\left(2\dfrac{5}{6}+1\dfrac{4}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{1}{2}\right)\)
\(=\left(\dfrac{17}{6}+\dfrac{13}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{6}{12}\right)\)
\(=\left(\dfrac{153}{54}+\dfrac{78}{54}\right):\left(1\dfrac{-5}{12}\right)\)
\(=\dfrac{231}{54}:\dfrac{7}{12}\)
\(=\dfrac{198}{27}\)
\(b)\dfrac{0,8\left(\dfrac{4}{5}:1,25\right)}{0,64-\dfrac{1}{25}}\)
\(=\dfrac{0,8\left(0,8:1,25\right)}{0,64-0,04}\)
\(=\dfrac{0,8.0,64}{0,6}\)
\(=\dfrac{0,512}{0,6}\)\(=\dfrac{64}{75}\)
1: =>7/3x=3+1/3-8-2/3=-5-1/3=-16/3
=>x=-16/3:7/3=-7/16
2: =>1/3|x-2|=4/5+3/7=28/35+15/35=43/35
=>|x-2|=129/35
=>x-2=129/35 hoặc x-2=-129/35
=>x=199/35 hoặc x=-59/35
a) Đặt \(C=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{100}}\)
\(\Rightarrow5C=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{99}}\)
\(\Rightarrow5C-C=1-\dfrac{1}{5^{100}}\Rightarrow4C=1-\dfrac{1}{5^{100}}\Rightarrow C=\dfrac{1-\dfrac{1}{5^{100}}}{4}\)
\(\Rightarrow A=8.5^{100}.\dfrac{1-\dfrac{1}{5^{100}}}{4}+1=2.\left(5^{100}-1\right)+1=2.5^{100}-2+1=2.5^{100}-1\)
b)\(B=\dfrac{4}{3}-\dfrac{4}{3^2}+...-\dfrac{4}{3^{100}}\)
\(B=4.\left(\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\right)\)
Đặt \(\left(\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\right)=D\)
\(\Rightarrow3D=1-\dfrac{1}{3}+...-\dfrac{1}{3^{99}}\)
\(\Rightarrow3D+D=1-\dfrac{1}{3^{100}}\)
\(\Rightarrow D=\dfrac{1-\dfrac{1}{3^{100}}}{4}\)
Đặt N=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+......+\dfrac{1}{5^{100}}\)
5N=\(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+..........+\dfrac{1}{5^{99}}\)
5N-N= \(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+.............+\dfrac{1}{5^{99}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+..........+\dfrac{1}{5^{100}}\right)\)
4N=1-\(\dfrac{1}{5^{100}}\) =\(\dfrac{5^{100}-1}{5^{100}}\)
N=\(\dfrac{5^{100}-1}{4.5^{100}}\)
Thay N vào D ,ta có
D= 4.5\(^{100}\).(\(\dfrac{5^{100}-1}{4.5^{100}}\) )+1
D=5\(^{100}\)
Vậy D =5\(^{100}\)
thank nha, "Thiên Nhi"