\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

2P=\(\dfrac{2}{2}+\dfrac{2}{2^2}+...+\dfrac{2}{2^{100}}\)

2P=\(1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)

2P-P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)

P=\(\dfrac{1}{2}-\dfrac{1}{2^{100}}\)

24 tháng 4 2017

\(P=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)

\(2P=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)\(\)

\(2P-P=1-\dfrac{1}{2^{100}}\)

\(P=\dfrac{2^{100}}{2^{100}}-\dfrac{1}{2^{100}}\)

\(P=\dfrac{2^{100}-1}{2^{100}}\)

24 tháng 4 2017

cho minh xin yeu cau de bai

26 tháng 4 2017

trả hiểu yêu cầu đề bài là j cả

21 tháng 7 2018

\(a)\left(2\dfrac{5}{6}+1\dfrac{4}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{1}{2}\right)\)

\(=\left(\dfrac{17}{6}+\dfrac{13}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{6}{12}\right)\)

\(=\left(\dfrac{153}{54}+\dfrac{78}{54}\right):\left(1\dfrac{-5}{12}\right)\)

\(=\dfrac{231}{54}:\dfrac{7}{12}\)

\(=\dfrac{198}{27}\)

21 tháng 7 2018

\(b)\dfrac{0,8\left(\dfrac{4}{5}:1,25\right)}{0,64-\dfrac{1}{25}}\)

\(=\dfrac{0,8\left(0,8:1,25\right)}{0,64-0,04}\)

\(=\dfrac{0,8.0,64}{0,6}\)

\(=\dfrac{0,512}{0,6}\)\(=\dfrac{64}{75}\)

30 tháng 3 2018

b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)

Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhéhaha

30 tháng 3 2018

cảm ơn bạn

6 tháng 5 2017

tự xử đi

6 tháng 5 2017

mk ăn mày lun ak

22 tháng 8 2017

\(A=\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{3.4}-\dfrac{1}{3.4.5}+\dfrac{1}{99.100}-\dfrac{1}{99.100.101}\)

\(A=\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)-\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100.101}\right)\)

\(A=\left(1-\dfrac{1}{100}\right)-\left(\dfrac{\dfrac{1}{1.2}-\dfrac{1}{100.101}}{2}\right)\)

Bấm máy nha

22 tháng 8 2017

\(B=\dfrac{5}{1.2.3.4}+\dfrac{5}{2.3.4.5}+\dfrac{5}{3.4.5.6}+...+\dfrac{5}{98.99.100.101}\)

\(B=\dfrac{5}{3}.\left(\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+...+\dfrac{3}{98.99.100.101}\right)\)

\(B=\dfrac{5}{3}.\left(\dfrac{4-1}{1.2.3.4}+\dfrac{5-2}{2.3.4.5}+...+\dfrac{101-98}{98.99.100.101}\right)\)

\(B=\dfrac{5}{3}.\left(\dfrac{4}{1.2.3.4}-\dfrac{1}{1.2.3.4}+\dfrac{5}{2.3.4.5}-\dfrac{2}{2.3.4.5}+...+\dfrac{101}{98.99.100.101}-\dfrac{98}{98.99.100.101}\right)\)

\(B=\dfrac{5}{3}.\left(\dfrac{1}{1.2.3}-\dfrac{1}{99.100.101}\right)\)

\(B=\dfrac{5}{3}.\dfrac{166649}{999900}\approx0,3\)

2 tháng 5 2017

Đặt N=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+......+\dfrac{1}{5^{100}}\)

5N=\(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+..........+\dfrac{1}{5^{99}}\)

5N-N= \(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+.............+\dfrac{1}{5^{99}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+..........+\dfrac{1}{5^{100}}\right)\)

4N=1-\(\dfrac{1}{5^{100}}\) =\(\dfrac{5^{100}-1}{5^{100}}\)

N=\(\dfrac{5^{100}-1}{4.5^{100}}\)

Thay N vào D ,ta có

D= 4.5\(^{100}\).(\(\dfrac{5^{100}-1}{4.5^{100}}\) )+1

D=5\(^{100}\)

Vậy D =5\(^{100}\)

thank nha, "Thiên Nhi"vuivuivui