Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tu \(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\)
\(\Leftrightarrow a^3=110+3\sqrt[3]{55+\sqrt{3024}}\cdot\sqrt[3]{55-\sqrt{3024}}\left(\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\right)\)
\(\Leftrightarrow a^3-3a-110=0\)
\(\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\)(de thay a^2+5a+22>0)
\(\Leftrightarrow a=5\Rightarrow P=\frac{7}{3}\)
a. ĐKXĐ:
\(\hept{\begin{cases}\sqrt{x}-1\ne0\\x-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}}\)
b. ta có \(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c. khi \(x=\frac{1}{4}\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow A=\frac{\frac{1}{2}+1}{\frac{1}{2}}=3\)
khi \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{2}+1\Rightarrow A=\frac{\sqrt{2}+1+1}{\sqrt{2}+1}=\sqrt{2}\)
\(a,ĐKXĐ:A=x\ge0;x\ne1\)
\(b,A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}}< =>ĐPCM\)
c,thay \(x=\frac{1}{4}\)vào A
\(c,A=\frac{\sqrt{\frac{1}{4}}+1}{\sqrt{\frac{1}{4}}}\)
\(A=\frac{\frac{1}{2}+1}{\frac{1}{2}}\)
\(A=3\)
\(x=3+2\sqrt{2}\)
\(x=\sqrt{2}^2+2\sqrt{2}+1\)
\(x=\left(\sqrt{2}+1\right)^2\)thay x vào A
\(A=\frac{\sqrt{\left(\sqrt{2}+1\right)^2}+1}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(A=\frac{\sqrt{2}+1+1}{\sqrt{2}+1}\)
\(A=\frac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(A=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\)
Bài 1
a) \(BC=125\Rightarrow BC^2=15625\)
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)
\(\frac{AB^2}{9}=625\Rightarrow AB=75\)
\(\frac{AC^2}{16}=625\Rightarrow AC=100\)
Áp dụng hệ thức lượng trong tam giác vuông ta có
\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)
\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)
b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông
Bài 2
Hình bạn tự vẽ
Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)
\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)
Bài 3 Đề bài này không đủ dữ kiện tính S của ABC
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2
a) \(\sqrt{\frac{196}{169}}=\frac{14}{13}\)
b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)
c) \(\sqrt{\frac{0,36}{25}}=\frac{0,6}{5}=\frac{3}{25}\)
d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\frac{8}{7}\)
a) \(\sqrt{\frac{196}{169}}=\sqrt{\left(\frac{14}{13}\right)^2}=\frac{14}{13}\)
b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\sqrt{\left(\frac{8}{5}\right)^2}=\frac{8}{5}\)
c) \(\sqrt{\frac{0,36}{25}}=\sqrt{\left(\frac{0,6}{5}\right)^2}=\frac{0,6}{5}=\frac{6}{50}=\frac{3}{25}\)
d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\sqrt{\left(\frac{8}{7}\right)^2}=\frac{8}{7}\)
\(a\)
\(\sqrt{2,7}\)\(.\)\(\sqrt{1,2}\)
\(=\)\(\sqrt{2,7.1,2}\)
\(=\)\(\sqrt{3,24}\)
\(=\)\(1,8\)
\(b\)
\(\sqrt{85}.\sqrt{125}.\sqrt{68}\)
\(=\)\(\sqrt{85.125.68}\)
\(=\)\(\sqrt{722500}\)
\(=\)\(850\)
\(c\)
\(\frac{\sqrt{13,5}}{\sqrt{4,5}}\)
\(=\)\(\frac{3,67}{2,12}\)
HỌC TỐT!!!
\(\sqrt{16+6\sqrt{7}}=a+\sqrt{7}\)
\(\Leftrightarrow\sqrt{9+2.3.\sqrt{7}+7}=a+\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(3+\sqrt{7}\right)^2}=a+\sqrt{7}\)
\(\Leftrightarrow3+\sqrt{7}=a+\sqrt{7}\)
\(\Leftrightarrow a=3\)