K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

a) \(\sqrt{\frac{196}{169}}=\frac{14}{13}\)

b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)

c) \(\sqrt{\frac{0,36}{25}}=\frac{0,6}{5}=\frac{3}{25}\)

d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\frac{8}{7}\)

24 tháng 8 2020

a) \(\sqrt{\frac{196}{169}}=\sqrt{\left(\frac{14}{13}\right)^2}=\frac{14}{13}\)

b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\sqrt{\left(\frac{8}{5}\right)^2}=\frac{8}{5}\)

c) \(\sqrt{\frac{0,36}{25}}=\sqrt{\left(\frac{0,6}{5}\right)^2}=\frac{0,6}{5}=\frac{6}{50}=\frac{3}{25}\)

d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\sqrt{\left(\frac{8}{7}\right)^2}=\frac{8}{7}\)

a: \(=4\cdot5+14:7\)

=20+2

=22

1 tháng 10 2019

a) \(\sqrt{\frac{25}{81}\cdot\frac{16}{49}\cdot\frac{169}{9}}\\ =\sqrt{\left(\frac{5}{9}\right)^2\cdot\left(\frac{4}{7}\right)^2\cdot\left(\frac{13}{3}\right)^2}\\ =\sqrt{\left(\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{13}{3}\right)^2}\\ =\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{13}{3}\\ =\frac{260}{189}\)

b) \(\sqrt{3\frac{1}{6}\cdot2\frac{14}{25}\cdot2\frac{34}{81}}\\ =\sqrt{\frac{19}{6}\cdot\frac{64}{25}\cdot\frac{196}{81}}\\ =\sqrt{\frac{19}{6}\cdot\left(\frac{8}{5}\right)^2\cdot\left(\frac{14}{9}\right)^2}\\ =\sqrt{\frac{19}{6}\cdot\left(\frac{8}{5}\cdot\frac{14}{9}\right)^2}\\ =\sqrt{\frac{19}{6}\cdot\frac{112}{45}}\\ =\sqrt{\frac{1064}{135}}\)

Bổ sung câu b :

\(\sqrt{3\frac{1}{16}.2\frac{14}{25}.2\frac{34}{81}}=\sqrt{\frac{49}{16}.\frac{64}{25}.\frac{196}{81}}=\sqrt{\frac{49}{16}}.\sqrt{\frac{64}{25}}.\sqrt{\frac{196}{81}}=\frac{7}{4}.\frac{8}{5}.\frac{14}{9}=\frac{196}{45}\)

28 tháng 7 2020

c) \(\frac{5}{8}+\frac{13}{10}-9+25=\frac{717}{40}\)

d) \(\sqrt{0,2^2}=\left|0,2\right|=0,2\)

e) \(\sqrt{\left(-0.3\right)^2}=0,3\)

28 tháng 7 2020

g) \(-\sqrt{\left(-1.3\right)^2}=-1,3\)

h) \(-0,7\sqrt{\left(-0,7\right)^2}=-0,49\)

30 tháng 11 2016

\(a,\sqrt{2,5}.\sqrt{30}.\sqrt{48}\)

\(=\sqrt{2,5.30.48}\)

\(=\sqrt{3600}\)

\(=60\)

\(b,\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

\(c,\sqrt{3\frac{1}{16}.2\frac{14}{25}.2\frac{34}{81}}\)

\(=\sqrt{\frac{49}{16}.\frac{64}{25}.\frac{196}{81}}\)

\(=\sqrt{\frac{49}{16}}.\sqrt{\frac{64}{25}}.\sqrt{\frac{196}{81}}\)

\(=\frac{7}{4}.\frac{8}{5}.\frac{14}{9}\)

\(=\frac{196}{45}\)

Đúng ko

19 tháng 6 2015

a, bạn chỉ cần lập công thức tông quát :

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cái này bạn chỉ cần trục căn thức ở mẫu chưng minh xong áp dụng vào luôn là ra

a, kq : 4/5

b,\(1-\frac{1}{\sqrt{n+1}}\)

c,d chưa nghĩ ra

18 tháng 6 2015

  ta có:  \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{\left(n+1\right)n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{\left(n+1\right)n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

nên: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}=\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)\(=1-\frac{1}{5}=\frac{4}{5}\)

3 tháng 6 2016

a)
Ta có :

\(\sqrt{0,16}\) + \(\sqrt{\frac{4}{25}}\) = \(\sqrt{\left(0,4^2\right)}\) + \(\sqrt{\left(\frac{2}{5}\right)^2}\) = 0,4 + \(\frac{2}{5}\) = \(\frac{2}{5}+\frac{2}{5}\) = \(\frac{4}{5}\)

b)

Ta có :

\(\sqrt{3\frac{3}{16}}\) - \(\sqrt{0,36}\) = \(\sqrt{\left(\frac{7}{4}\right)^2}\)\(\sqrt{\left(0,6^2\right)}\)\(\frac{7}{4}-\frac{3}{5}=\frac{23}{20}\)