Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(10a+5\right)^2=100a^2+100a+25=100a\left(a+1\right)+25=VP\)
=> ĐPCM
\(25^2=\left(20+5\right)^2=400+200+25=625\)
\(35^2=\left(30+5\right)^2=900+300+25=1225\)
\(45^2=\left(40+5\right)^2=1600+400+25=2025\)
\(65^2=\left(60+5\right)^2=3600+600+25=4225\)
Bài giải:
a) (a + b)2 = (a – b)2 + 4ab
- Biến đổi vế trái:
(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab
= (a – b)2 + 4ab
Vậy (a + b)2 = (a – b)2 + 4ab
- Hoặc biến đổi vế phải:
(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2
= (a + b)2
Vậy (a + b)2 = (a – b)2 + 4ab
b) (a – b)2 = (a + b)2 – 4ab
Biến đổi vế phải:
(a + b)2 – 4ab = a2 +2ab + b2 – 4ab
= a2 – 2ab + b2 = (a – b)2
Vậy (a – b)2 = (a + b)2 – 4ab
Áp dụng: Tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412
CMR: (a + b)2 = (a - b)2 + 4ab
(a - b)2 = (a + b)2 - 4ab
Ta có: (a + b)2 = a2 + 2ab + b2
= a2 +2ab + b2 - 2ab +2ab
= a2 - 2ab + b2 + 2ab +2ab
= (a - b)2 +4ab
Ta có: (a - b)2 = a2 - 2ab + b2
= a2 - 2ab + b2 + 2ab - 2ab
= a2 + 2ab + b2 - 2ab - 2ab
= (a + b)2 - 4ab
Áp dụng:
a) Tính (a - b)2 , biết a + b = 7 và a.b = 12
Ta có: (a - b)2 = (a + b)2 - 4ab
= 72 - 4.12
= 49 - 48
Vậy (a - b)2 = 1
b) Tính (a + b)2 , biết a - b = 7 và a.b = 3
Ta có: (a + b)2 = (a - b)2 + 4ab
= 72 + 4.3
= 49 + 12
Vậy ( a + b)2 = 61
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\Rightarrow6^2=a^2+b^2+c^2+2.12\Rightarrow a^2+b^2+c^2=12\)
Ta có:
\(a^2+b^2+c^2=ab+bc+ca\left(=12\right)\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow M=0}\)
Chúc bạn học tốt.
Ta có :
a. ( a+b+c) = - 12 (1)
b.(a+b+c) = 18 (2)
c.(a+b+c) =30 (3)
=> (1) + (2) + (3) = a.(a+b+c) + b(a+b+c) + c(a+b+c)= -12+18+30
\(\Rightarrow\left(a+b+c\right)\left(a+b+c\right)=36\)
\(\Rightarrow\left(a+b+c\right)^2=6^2=\left(-6\right)^2\)
\(\Rightarrow a+b+c\in\left\{6;-6\right\}\)
Với \(a+b+c=6\)
Từ (1) => a = -12 : 6 = - 2
Từ (2) => b = 18 : 6 = 3
Từ (3) => c = 30 : 6 = 5
Với a + b + c = -6
Từ (1) => a = -12 : ( -6 ) = 2
Từ (2) => b = 18 : (-6) = -3
Từ (3) => c = 30: ( -6) = -5
\(a^2+b^2-c^2\)
\(=a^2+\left(b-c\right)\left(b+c\right)\)
a + b + c = 0
=> b + c = -a
\(=a^2-a\left(b-c\right)\)
\(=a\left(a-b+c\right)\)
\(=a\left(a+b+c-2b\right)\)
\(=-2ab\)
Hoàn toàn tương tự ta có :
\(b^2+c^2-a^2=-2bc\)
\(c^2+a^2-b^2=-2ac\)
Từ đó suy ra :
\(M=\frac{\left(-2ab\right)\left(-2bc\right)\left(-2ac\right)}{10a^2b^2c^2}\)
\(M=\frac{-8a^2b^2c^2}{10a^2b^2c^2}\)
\(M=\frac{-4}{5}\)
1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)
\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)
\(10a=12.\left(a-0,1\right)\)
\(\Rightarrow10a=12a-1,2\)
\(\Rightarrow12a-10a=1,2\)
\(\Rightarrow2a=1,2\)
\(\Rightarrow a=1,2:2\)
\(\Rightarrow a=0,6\)
Vậy \(a=0,6.\)
Chúc bạn học tốt!
Tính a \(10a=12\left(a-0,1\right)\)