\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Bài giải:

a) (a + b)2 = (a – b)2 + 4ab

- Biến đổi vế trái:

(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab

= (a – b)2 + 4ab

Vậy (a + b)2 = (a – b)2 + 4ab

- Hoặc biến đổi vế phải:

(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2

= (a + b)2

Vậy (a + b)2 = (a – b)2 + 4ab

b) (a – b)2 = (a + b)2 – 4ab

Biến đổi vế phải:

(a + b)2 – 4ab = a2 +2ab + b2 – 4ab

= a2 – 2ab + b2 = (a – b)2

Vậy (a – b)2 = (a + b)2 – 4ab

Áp dụng: Tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412

13 tháng 7 2017

CMR: (a + b)2 = (a - b)2 + 4ab

(a - b)2 = (a + b)2 - 4ab

Ta có: (a + b)2 = a2 + 2ab + b2

= a2 +2ab + b2 - 2ab +2ab

= a2 - 2ab + b2 + 2ab +2ab

= (a - b)2 +4ab

Ta có: (a - b)2 = a2 - 2ab + b2

= a2 - 2ab + b2 + 2ab - 2ab

= a2 + 2ab + b2 - 2ab - 2ab

= (a + b)2 - 4ab

Áp dụng:

a) Tính (a - b)2 , biết a + b = 7 và a.b = 12

Ta có: (a - b)2 = (a + b)2 - 4ab

= 72 - 4.12

= 49 - 48

Vậy (a - b)2 = 1

b) Tính (a + b)2 , biết a - b = 7 và a.b = 3

Ta có: (a + b)2 = (a - b)2 + 4ab

= 72 + 4.3

= 49 + 12

Vậy ( a + b)2 = 61

20 tháng 4 2017

a) a3 + b3 = (a + b)3 – 3ab(a + b)

Thực hiện vế phải:

(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

Thực hiện vế phải:

(a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.



27 tháng 6 2017

a) Ta có : a3 + b3 = (a + b)3 – 3ab(a + b)

=> VP = (a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

=> VP = (a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.


10 tháng 8 2019

\(1.\)

\(a,\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)

\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)

10 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)

b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)

24 tháng 7 2017

a) Ta có:\(VT=a^2-2ab+b^2\)

\(=a^2+2ab+b^2-4ab=\left(a+b\right)^2-4ab=VP\)

Vậy ...

b) \(a+b=7\Rightarrow\left(a+b\right)^2=7^2=49\)

\(\Leftrightarrow a^2+2ab+b^2=49\)

\(\Leftrightarrow a^2+24+b^2=49\)

\(\Leftrightarrow a^2+b^2=25\)

\(\Leftrightarrow\left(a-b\right)^2+2ab=25\)

\(\Leftrightarrow\left(a-b\right)^2=25-24=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=1\\a-b=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(a-b\right)^{2017}=1\\\left(a-b\right)^{2017}=-1\end{matrix}\right.\)

Vậy (a - b)2017 = 1 hoặc (a - b)2017 = -1.

24 tháng 7 2017

Câu 1:

Ta có:

\(VP=\left(a+b\right)^2-4ab=a^2+2ab+2b^2-4ab\)

\(=a^2-2ab+b^2=\left(a-b\right)^2=VT\)

Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)(đpcm)

Chúc bạn học tốt!!!

6 tháng 7 2018

tích đúng mình làm cho

6 tháng 7 2018

bạn giải giùm với ạk

1. Ta có: \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\)

\(=2a.2b=4ab\)

=> đpcm

2. Ta có: \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\)

\(=2a^2+2b^2=2\left(a^2+b^2\right)\)

=> đpcm

3. Ta có:\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab\)

\(=a^2-2ab+b^2=\left(a-b\right)^2\)

=> đpcm

4. Ta có: \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

15 tháng 8 2020

\(a,\left(a+b\right)^2-\left(a-b\right)^2=4ab\)

\(\Leftrightarrow\left(a^2+b^2+2ab\right)-\left(a^2+b^2-2ab\right)=4ab\)

\(\Leftrightarrow a^2+b^2-a^2-b^2+2ab+2ab=4ab\)

\(\Leftrightarrow4ab=4ab\Leftrightarrow4ab-4ab=0\Leftrightarrow0=0\)(đpcm)

\(b,\left(a+b\right)^2+\left(a-b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a^2+b^2+2ab\right)+\left(a^2+b^2-2ab\right)=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2+a^2+b^2+\left(2ab-2ab\right)=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2\left(a^2+b^2\right)=2\left(a^2+b^2\right)\Leftrightarrow2\left(a^2+b^2\right)-2\left(a^2+b^2\right)=0\Leftrightarrow0=0\)(đpcm)

\(c,\left(a+b\right)^2-4ab=\left(a-b\right)^2\)

\(\Leftrightarrow\left(a^2+b^2+2ab\right)-4ab=a^2+b^2-2ab\)

\(\Leftrightarrow a^2+b^2-2ab=a^2+b^2-2ab\)

\(\Leftrightarrow\left(a-b\right)^2=\left(a-b\right)^2\Leftrightarrow\left(a-b\right)^2-\left(a-b\right)^2=0\Leftrightarrow0=0\)(đpcm)

\(d,\left(a-b\right)^2+4ab=\left(a+b\right)^2\)

\(\Leftrightarrow\left(a^2+b^2-2ab\right)+4ab=\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2-2ab+4ab=\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2+2ab=\left(a+b\right)^2\Leftrightarrow\left(a+b\right)^2=\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2-\left(a+b\right)^2=0\Leftrightarrow0=0\)(đpcm)

23 tháng 7 2018

a) mk chỉnh đề:

Chứng minh:  \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)   (1)

                hoặc   \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (2)

            BÀI LÀM

TH1:

\(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2=VP\)  (đpcm)

TH2:

\(VP=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2=VT\)  (đpcm)

b)  \(a+b=9\)\(\Rightarrow\)\(a=9-b\)

Ta có:  \(ab=20\)\(\Rightarrow\)\(\left(9-b\right).b=20\)

\(\Leftrightarrow\)\(b^2-9b+20=0\)

\(\Leftrightarrow\)\(\left(b-4\right)\left(b-5\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}b=4\\b=5\end{cases}}\)

Nếu  \(b=4\)thì:  \(a=5\)\(\Rightarrow\)\(\left(a-b\right)^{2011}=\left(5-4\right)^{2011}=1\)

Nếu  \(b=5\)thì  \(a=4\)\(\Rightarrow\)\(\left(a-b\right)^{2011}=\left(4-5\right)^{2011}=-1\)

23 tháng 7 2018

a, sửa đề CM: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

\(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2=VT\left(đpcm\right)\)

b, \(a+b=9\Leftrightarrow\left(a+b\right)^2=81\Leftrightarrow\left(a-b\right)^2+4ab=81\Leftrightarrow\left(a-b\right)^2=81-4.20=1\Leftrightarrow a-b=\pm1\)

Với \(a-b=1\Rightarrow\left(a-b\right)^{2011}=1\)

Với \(a-b=-1\Rightarrow\left(a-b\right)^{2011}=-1\)

a) Sửa đề: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

Ta có: \(VP=\left(a-b\right)^2+4ab\)

\(=a^2-2ab+b^2+4ab\)

\(=a^2+2ab+b^2\)

\(=\left(a+b\right)^2=VT\)(đpcm)

b) Ta có: \(VT=\left(a-b\right)^2\)

\(=a^2-2ab+b^2\)

\(=a^2+2ab+b^2-4ab\)

\(=\left(a+b\right)^2-4ab=VP\)(đpcm)

c) Ta có: \(VP=\left(ax-by\right)^2+\left(ay+bx\right)^2\)

\(=a^2x^2-2axby+b^2y^2+a^2y^2+2aybx+b^2x^2\)

\(=a^2x^2+b^2y^2+a^2y^2+b^2x^2\)

\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)

\(=\left(x^2+y^2\right)\left(a^2+b^2\right)=VT\)(đpcm)

18 tháng 7 2016

ban su dung hang dang thuc la ra