Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{y+1}{4x^2+1}=1-\frac{4x^2-y}{4x^2+1}\ge1-\frac{4x^2-y}{2\sqrt{4x^2.1}}=1+\frac{y}{4x}-x;\)
Tương tự ta được \(\frac{1+z}{4y^2+1}\ge1+\frac{z}{4y}-y\); \(\frac{1+x}{4z^2+1}\ge1+\frac{x}{4z}-z\)
cộng 3 bất đăng thức trên ta được p \(\ge3+\frac{1}{4}\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)-\left(x+y+z\right)=\frac{3}{2}+\frac{1}{4}\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)\ge\)\(\frac{3}{2}+\frac{1}{4}.3\sqrt[3]{\frac{y}{x}.\frac{z}{y}.\frac{x}{z}}=\frac{9}{4}\)
p min khi x=y=z = 1/2
\(Q\ge2\left(x+y+z\right)+3.\frac{9}{x+y+z}=2\left(x+y+z\right)+\frac{27}{x+y+z}.\)
Đặt X+Y+Z=t (\(t\le1\))
\(Q\ge2t+\frac{27}{t}=\left(2t+\frac{2}{t}\right)+\frac{25}{t}\ge2\sqrt{2t.\frac{2}{t}}+\frac{25}{1}=4+25=29\\ \)
Dấu = xảy ra khi x=y=z=1/3
Theo bđt cô si ta có : \(x+y+z\ge3\sqrt[3]{xyz}\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
=> \(Q\ge6\sqrt[3]{xyz}+9\sqrt[3]{\frac{1}{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}\cdot9\sqrt[3]{\frac{1}{xyz}}}=6\sqrt{6}\)
Dấu = xảy ra khi : \(6\sqrt[3]{xyz}=9\sqrt[3]{\frac{1}{xyz}}\) Giải ra ta đc : \(xyz=\frac{3}{2}\sqrt{\frac{3}{2}}\)
Áp dụng BĐt bu-nhi-a, ta có
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(6-x^2-y^2-z^2\right)}\)
Áp dụng BĐt cô-si, ta có
\(\sqrt{\left(x^2+y^2+z^2\right)\left(6-x^2-y^2-z^2\right)}\le\frac{x^2+y^2+z^2+6-x^2-y^2-z^2}{2}=3\)
=> VT <=VP
Dấu = xảy ra là của BĐT cô-si và bu-nhi-a,
Bạn tự tìm nhá, t nhác làm tiếp lắm
^^
\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)
\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)
\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Theo điều kiện giả thiết, ta có:\(\sqrt{3}\ge x+y+z\Rightarrow3\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le1\)\(\Rightarrow VT\le\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+x}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Lời giải:
Đặt \(A=x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\)
Áp dụng BĐT Bunhiacopxky và AM-GM:
\(A^2\leq (x^2+y^2+z^2)(1-y^2+1-z^2+1-x^2)\)
\(\leq \left(\frac{x^2+y^2+z^2+1-y^2+1-z^2+1-x^2}{2}\right)^2=(\frac{3}{2})^2\)
\(\Rightarrow A\leq \frac{3}{2}\)
Dấu "=" xảy ra khi \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)
Ta có đpcm.
cho x,y,z tm xy+xz+yz=1. cmr
\(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\)
Cmr gì bạn
Ghi đủ đề rùi nhắn tin cho mk biết là đã sửa rùi mk làm cho
Không mất tổng quát giả sử \(0< x\le y\le z\)
\(\Rightarrow\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}>0\) khi đó ta có:
\(2=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}=\frac{3}{x}\)
\(\Leftrightarrow2\le\frac{3}{x}\Rightarrow x\le\frac{3}{2}\) mà \(x\inℤ^+\) nên \(x=1\)
Thay vào ta được: \(\frac{1}{1}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Leftrightarrow\frac{1}{y}+\frac{1}{z}=1\) mà \(\frac{1}{y}+\frac{1}{z}\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}\)
\(\Rightarrow1\le\frac{2}{y}\Leftrightarrow y\le2\) mà \(y\inℤ^+\) nên \(y\in\left\{1;2\right\}\)
Nếu y = 1 => \(\frac{1}{z}=0\) (vô lý)
Nếu y = 2 => \(\frac{1}{z}=\frac{1}{2}\Rightarrow z=2\)
Vậy \(\hept{\begin{cases}x=1\\y=z=2\end{cases}}\) và các hoán vị của nó
Vai trò của x, y, z là như nhau nên ta giả sử \(x\ge y\ge z>0\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\Rightarrow2=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{z}\Rightarrow0< z\le\frac{3}{2}\)
\(\Rightarrow z=1\)(Vì z nguyên)
Do đó \(1=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\Rightarrow0< y\le2\)
+) Xét y = 1 thì \(\frac{1}{x}=0\)(vô lí, loại)
+) Xét y = 2 thì \(\frac{1}{x}=\frac{1}{2}\Rightarrow x=2\)
Vậy (x; y; z) = (2; 2; 1) và các hoán vị