Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo điều kiện giả thiết, ta có:\(\sqrt{3}\ge x+y+z\Rightarrow3\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le1\)\(\Rightarrow VT\le\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+x}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Lời giải:
Đặt \(A=x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\)
Áp dụng BĐT Bunhiacopxky và AM-GM:
\(A^2\leq (x^2+y^2+z^2)(1-y^2+1-z^2+1-x^2)\)
\(\leq \left(\frac{x^2+y^2+z^2+1-y^2+1-z^2+1-x^2}{2}\right)^2=(\frac{3}{2})^2\)
\(\Rightarrow A\leq \frac{3}{2}\)
Dấu "=" xảy ra khi \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)
Ta có đpcm.
đánh sai đề rồi bạn êi, phải là \(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\Leftrightarrow2x\sqrt{1-y^2}\) \(+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)
<=> \(\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
<=> ..bla bla tự làm nhá !
Sử dụng Bất đẳng thức Bunyakovsky cho 2 bộ 3 số \(\left(\sqrt{1-y^2};\sqrt{2-z^2};\sqrt{3-x^2}\right)\) và \(\left(x,y,z\right)\) ta có
\(\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(x^2+y^2+z^2\right)\cdot\left[6-\left(x^2+y^2+z^2\right)\right]\left(1\right)\)
Đặt \(x^2+y^2+z^2=a\) ta có Bất đẳng thức (1) tương đương
\(9=\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(a\right)\cdot\left(6-a\right)\)
\(=-a^2+6a-9+9=-\left(a-3\right)^2+9\le9\)
Dấu "=" xảy ra khi Giải hệ phương trình trên ta được
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=x^2+y^2+z^2=3\\\frac{x^2}{1-y^2}=\frac{y^2}{2-z^2}=\frac{z^2}{3-x^2}=1\end{cases}}\) giải hệ pt ta có \(\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}\)
Thế nào nó bị lỗi nên không hiển thị
a) DK: x>=2; y>=3; z>=5
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-2\sqrt{y-3}\cdot2+4\right)+\left(z-5-2\sqrt{z-5}\cdot3+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)(*)
VT(*) >= 0 với mọi x;y;z TMĐK nên để thỏa mãn (*) thì:
\(\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}}\)
b) x;y;z là nghiệm của PT: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\left(1\right)\) (1)=> đk: x >=0; y >= 1 ; z >= 2.
Ta có:
- \(\left(\sqrt{x}-1\right)^2\ge0\Rightarrow x-2\sqrt{x}+1\ge0\Rightarrow\sqrt{x}\le\frac{x+1}{2}\)(a)
- Tương tự: \(\sqrt{y-1}\le\frac{y-1+1}{2}=\frac{y}{2}\) (b)
- và: \(\sqrt{z-2}\le\frac{z-2+1}{2}=\frac{z-1}{2}\) (c)
- Do đó: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+1+y+z-1}{2}=\frac{x+y+z}{2}\)hay VT(1) <= VP(1) với mọi x;y;z.
Vậy để (1) thỏa mãn thì dấu "=" xảy ra hay các BĐT (a); (b); (c) xảy ra. Khi đó, x = 1; y = 2; z = 3
có \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)
\(y\sqrt{2-z^2}\le\frac{y+2-z^2}{2}\) cô si
\(z\sqrt{3-x^2}\le\frac{z+3-x^2}{2}\)
\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\frac{6}{2}=3\)
dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\sqrt{1-y^2}\\y=\sqrt{2-z^2}\\z=\sqrt{3-x^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\y^2=2-z^2\\z^2=3-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}}\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
Áp dụng BĐt bu-nhi-a, ta có
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(6-x^2-y^2-z^2\right)}\)
Áp dụng BĐt cô-si, ta có
\(\sqrt{\left(x^2+y^2+z^2\right)\left(6-x^2-y^2-z^2\right)}\le\frac{x^2+y^2+z^2+6-x^2-y^2-z^2}{2}=3\)
=> VT <=VP
Dấu = xảy ra là của BĐT cô-si và bu-nhi-a,
Bạn tự tìm nhá, t nhác làm tiếp lắm
^^