Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
Tương tự rồi cộng theo vế rồi rút gọn:
\(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Tiếp tục use AM-GM:
\(x^2y^2+y^2z^2=y^2\left(x^2+z^2\right)\ge2xy^2z\)
Tương tự rồi cộng theo vế rồi rút gọn:
\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
\(\Rightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
\(\Rightarrow VT=x^4+y^4+z^4\ge3xyz=VP\left(vi`...x+y+z=3\right)\)
Khi \(x=y=z=1\)
Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\)
\(P=3a^2+b^2+3c^2\)
Biểu thức này chỉ có min, không có max
VT=\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy.\left(x+y+z\right)\)
\(=\left(x+y\right)^2-\left(x+y\right).z+z^2-3xy\left(\text{vì }x+y+z=1\right)\)
\(=x^2+2xy+y^2-xz-yz+z^3-3xy\)
\(=x^2+y^2+z^2-xy-yz-xz\)
\(=\frac{1}{2}.\left(2x^2+2y^2+2z^2-2xy-2yz-2xz\right)\)
\(=\frac{1}{2}.\left[\left(x^2-2xy-y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)\right]\)
\(=\frac{1}{2}.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)=VP
=>dpcm
Ta có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=x+y+z\left(x^2+y^2+z^2+2xy+xz+yz\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=x^2+y^2+z^2-xy-yz-xz=\frac{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)}{2}=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Áp dụng bđt Cauchy có:
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\);
\(y^4+z^4\ge2\sqrt{y^4z^4}=2y^2z^2\);
\(z^4+x^4\ge2\sqrt{z^4x^4}=2z^2x^2\);
Cộng 2 vế của 3 bđt trên ta có:
\(2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Lại sử dụng Cauchy có:
\(\left\{{}\begin{matrix}x^2y^2+y^2z^2\ge2\sqrt{x^2y^2\cdot y^2z^2}=2xy^2z\left(1\right)\\y^2z^2+z^2x^2\ge2\sqrt{y^2z^2\cdot z^2x^2}=2xyz^2\left(2\right)\\z^2x^2+x^2y^2\ge2\sqrt{z^2x^2\cdot x^2y^2}=2x^2yz\left(3\right)\end{matrix}\right.\)
Cộng theo vế bđt (1), (2), (3) sau đó rút gọn ta đc:
\(x^2y^2+y^2z^2+z^2x^2\ge xy^2z+xyz^2+x^2yz=xyz\left(x+y+z\right)\)
\(\Rightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)=3xyz\left(đpcm\right)\)
Dấu ''='' xảy ra khi x = y = z = 1
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=3xyz\)
Dấu "=" xảy ra nên: \(x=y=z=1\)