Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)
\(\Rightarrow x^4\le15x-14\).
Tương tự: \(y^4\le15y-14;z^4\le15z-14\).
Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:
\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).
Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.
Vậy...
cho mình hỏi làm thế nào để bạn tìm ra đc cách xét hiệu x4-15x+14
có phưong pháp nào ko
nếu có thì bn giúp mk vs nhé
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào
\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)
Ta có
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)
Bình phương 2 vế của (1)
\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)
Do x+y+z=0 nên
\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)
\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)
Thay (3) vào (2)
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)
Áp dụng BĐT Cauhy-Schwarz ta có:
\(A=x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\ge\frac{\left(\frac{x+y+z}{3}\right)^2}{3}=\frac{\frac{1}{9}}{3}=\frac{1}{27}\)
Xảy ra khi x=y=z=1/3
Áp dụng BĐT AM-GM ta có:
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
Tương tự rồi cộng theo vế rồi rút gọn:
\(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Tiếp tục use AM-GM:
\(x^2y^2+y^2z^2=y^2\left(x^2+z^2\right)\ge2xy^2z\)
Tương tự rồi cộng theo vế rồi rút gọn:
\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
\(\Rightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
\(\Rightarrow VT=x^4+y^4+z^4\ge3xyz=VP\left(vi`...x+y+z=3\right)\)
Khi \(x=y=z=1\)
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\)
\(P=3a^2+b^2+3c^2\)
Biểu thức này chỉ có min, không có max
Áp dụng bđt Cauchy có:
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\);
\(y^4+z^4\ge2\sqrt{y^4z^4}=2y^2z^2\);
\(z^4+x^4\ge2\sqrt{z^4x^4}=2z^2x^2\);
Cộng 2 vế của 3 bđt trên ta có:
\(2\left(x^4+y^4+z^4\right)\ge2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Lại sử dụng Cauchy có:
\(\left\{{}\begin{matrix}x^2y^2+y^2z^2\ge2\sqrt{x^2y^2\cdot y^2z^2}=2xy^2z\left(1\right)\\y^2z^2+z^2x^2\ge2\sqrt{y^2z^2\cdot z^2x^2}=2xyz^2\left(2\right)\\z^2x^2+x^2y^2\ge2\sqrt{z^2x^2\cdot x^2y^2}=2x^2yz\left(3\right)\end{matrix}\right.\)
Cộng theo vế bđt (1), (2), (3) sau đó rút gọn ta đc:
\(x^2y^2+y^2z^2+z^2x^2\ge xy^2z+xyz^2+x^2yz=xyz\left(x+y+z\right)\)
\(\Rightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)=3xyz\left(đpcm\right)\)
Dấu ''='' xảy ra khi x = y = z = 1