Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(\dfrac{\sqrt{xy}-1+\sqrt{yz}-3+\sqrt{zx}-5}{3+9+6}\) = \(\dfrac{11-\left(1+3+5\right)}{18}\)=\(\dfrac{1}{9}\)
a, Sửa đề \(xy=\dfrac{2}{7}\)
Ta có: \(xy=\dfrac{2}{7};yz=\dfrac{3}{2};zx=\dfrac{3}{7}\Rightarrow xy.yz.zx=\dfrac{2}{7}.\dfrac{3}{2}.\dfrac{3}{7}\)
\(\Rightarrow\left(xyz\right)^2=\dfrac{9}{49}\Leftrightarrow\left(xyz\right)^2=\left(\pm\dfrac{3}{7}\right)^2\Rightarrow\left[{}\begin{matrix}xyz=\dfrac{3}{7}\\xyz=-\dfrac{3}{7}\end{matrix}\right.\)
+) Xét trường hợp \(xyz=\dfrac{3}{7}\)\(\Rightarrow\dfrac{2}{7}.z=\dfrac{3}{7}\Rightarrow z=\dfrac{3}{7}:\dfrac{2}{7}=\dfrac{3}{2}\)
\(\Rightarrow y.\dfrac{3}{2}=\dfrac{3}{2}\Rightarrow y=1\Rightarrow x.1=\dfrac{2}{7}\Rightarrow x=\dfrac{2}{7}\)
+) Xét trường hợp \(xyz=-\dfrac{3}{7}\Rightarrow\dfrac{2}{7}.z=-\dfrac{3}{7}\Rightarrow z=-\dfrac{3}{2}\)
\(\Rightarrow y.\dfrac{-3}{2}=\dfrac{3}{2}\Rightarrow y=-1\Rightarrow x.\left(-1\right)=\dfrac{2}{7}\Rightarrow x=-\dfrac{2}{7}\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=1\\z=\dfrac{2}{7}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-1\\z=-\dfrac{2}{7}\end{matrix}\right.\)
b, Ta có: \(xy=9z;yz=4x;zx=16y\Rightarrow\dfrac{xy}{z}=9;\dfrac{yz}{x}=4;\dfrac{zx}{y}=16\)
\(\Rightarrow\dfrac{xy}{z}.\dfrac{yz}{x}.\dfrac{zx}{y}=9.4.16\Rightarrow xyz=576\)
\(\Rightarrow xy=\dfrac{576}{z};yz=\dfrac{576}{x};zx=\dfrac{576}{y}\)
\(\Rightarrow\dfrac{576}{z}=9z\Rightarrow9z^2=576\Rightarrow z^2=64\Rightarrow z=\pm8\)
\(\dfrac{576}{x}=4x\Rightarrow4x^2=576\Rightarrow x^2=144\Rightarrow x=\pm12\)
\(\dfrac{576}{y}=16y\Rightarrow16y^2=576\Rightarrow y^2=36\Rightarrow y=\pm6\)
Vì xyz=156 => x;y;z dương hoặc trong x;y;z có 2 số âm
\(\Rightarrow\left\{{}\begin{matrix}x=12\\y=6\\z=8\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=12\\y=-6\\z=-8\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-12\\y=6\\z=-8\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-12\\y=-6\\z=8\end{matrix}\right.\)
Vậy...
a) \(xy=\dfrac{3}{7};yz=\dfrac{3}{2};zx=\dfrac{3}{7}\)
từ \(xy=\dfrac{3}{7}vàzx=\dfrac{3}{7}\) \(\Rightarrow\) \(z=y\)
\(yz=\dfrac{3}{2}\) \(\Leftrightarrow\) \(y^2=\dfrac{3}{2}\) \(\Leftrightarrow\) \(y=\sqrt{\dfrac{3}{4}}\) \(\Leftrightarrow\) \(y=z=\dfrac{\sqrt{3}}{2}\)
\(\Rightarrow\) \(xy=\dfrac{3}{7}\) \(\Leftrightarrow\) \(x.\dfrac{\sqrt{3}}{2}=\dfrac{3}{7}\) \(\Leftrightarrow\) \(x=\dfrac{3}{7}:\dfrac{\sqrt{3}}{2}\) = \(\dfrac{3}{7}.\dfrac{2}{\sqrt{3}}=\dfrac{6}{7\sqrt{3}}\) = \(\dfrac{2\sqrt{3}}{7}\)
vậy \(x=\dfrac{2\sqrt{3}}{7}\) ; \(y=\dfrac{\sqrt{3}}{2}\) ; \(z=\dfrac{\sqrt{3}}{2}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
\(\Leftrightarrow\dfrac{yz+xz+xy}{xyz}=0\)
\(\Leftrightarrow xy+xz+yz=0\)
~ ~ ~
\(x^2+2yz\)
\(=x^2+yz-xy-xz\)
\(=\left(x-y\right)\left(x-z\right)\)
Tương tự, ta có: \(y^2+2xz=\left(y-x\right)\left(y-z\right)\) và \(z^2+2xy=\left(z-x\right)\left(z-y\right)\)
\(A=\dfrac{yz}{\left(x-z\right)\left(x-y\right)}+\dfrac{xz}{\left(y-x\right)\left(y-z\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\)
\(A=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-z\right)\left(x-y\right)\left(y-z\right)}\)
\(=\dfrac{\left(x-z\right)\left(x-y\right)\left(y-z\right)}{\left(x-z\right)\left(x-y\right)\left(y-z\right)}\)
= 1
Ta chứng minh được
\(a^2+b^2+c^2\) ≥\(\dfrac{\left(a+b+c\right)^2}{3}\)
A=\(x^4+y^4+z^4\) ≥ \(x^2y^2+y^2z^2+z^2x^2\) ≥ \(\dfrac{\left(xy+yz+zx\right)^2}{3}=\dfrac{1}{3}\)
=>\(x^4+y^4+z^4\) ≥ \(\dfrac{1}{3}\left(đpcm\right)\)
Chúc Bạn Học Tốt
x=6
y=8
z=10
Xin lỗi bạn vì mình không biết cách để tính theo cách tích ở tử.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{xy}{12}=\dfrac{yz}{20}=\dfrac{zx}{15}=\dfrac{xy+yz+zx}{12+20+15}=\dfrac{188}{47}=4\)
\(\Rightarrow\left\{{}\begin{matrix}xy=4.12\\yz=4.20\\zx=4.15\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}xy=48\\yz=80\\zx=60\end{matrix}\right.\)
\(\Rightarrow x^2.y^2.z^2=48.80.60\)
\(\Rightarrow\left(xyz\right)^2=480^2\)
\(\Rightarrow xyz=480\)
\(\Rightarrow\left\{{}\begin{matrix}x=480:80\\y=480:60\\z=480:48\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=8\\z=10\end{matrix}\right.\)
Vậy...