Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1) ta có : \(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow2\left(x+y\right)=3\left(2x-y\right)\)
\(\Leftrightarrow2x+2y=6x-3y\Leftrightarrow4x=5y\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)
vậy \(\dfrac{x}{y}=\dfrac{5}{4}\)
bài 1
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow\dfrac{2.\dfrac{x}{y}-1}{\dfrac{x}{y}+1}=\dfrac{2.\dfrac{x}{y}+2-3}{\dfrac{x}{y}+1}=2-\dfrac{3}{\dfrac{x}{y}+1}=\dfrac{2}{3}\)
\(2-\dfrac{2}{3}=\dfrac{4}{3}=\dfrac{3}{\dfrac{x}{y}+1}\)
\(\left(\dfrac{x}{y}+1\right)=\dfrac{9}{4}\Rightarrow\dfrac{x}{y}=\dfrac{9}{4}-\dfrac{4}{4}=\dfrac{5}{4}\)
1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)
a: \(\dfrac{3-x}{2}+y=1\)
=>3-x+2y=2
=>-x+2y=-1(1)
\(\dfrac{2-y}{3}+x=2\)
=>2-y+3x=6
=>3x-y=4(2)
Từ (1) và (2) suy ra x=7/5; y=1/5
b: \(\dfrac{x}{2}-\dfrac{y}{3}=\dfrac{1}{6}\)
=>3x-2y=1(3)
x-y/3=4
=>x-y=12(4)
Từ (3) và (4) suy ra x=-23; y=-35
c: \(\dfrac{x-2}{3}=y\)
=>x-2=3y
=>x-3y=2(5)
\(\dfrac{x-y}{2}=\dfrac{x}{2}\)
=>x-y=x
=>y=0
Thay y=0 vào x-3y=2, ta đc:
\(x-3\cdot0=2\)
=>x=2
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
a, \(\left[x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\right]x^2-1\)
\(=\left[x\left(x^2-16\right)-\left(x^2+1\right)\right]x^2-1\)
\(=\left[x^3-16x-x^2-1\right]x^2-1\)
\(=x^5-16x^3-x^4-x^2-1\)
b, \(\left(y-3\right)y+3y^2+9-y^2+2\left(y^2-2\right)\)
\(=y^2-3y+3y^2+9-y^2+2y^2-4\)
\(=5y^2-3y+5\)
c, \(\left(x+y\right)\left(x^2x^2-xy+y^2\right)\)
\(=x^5-x^2y+xy^2+x^4y-xy^2+y^3\)
d, \(\left(\dfrac{1}{2}xy+\dfrac{3}{4}y\right).\dfrac{1}{2}xy-\dfrac{3}{4}y\)
\(=\dfrac{1}{4}x^2y^2+\dfrac{3}{8}xy^2-\dfrac{3}{4}y\)
\(=\dfrac{1}{4}y.\left(x^2y+\dfrac{3}{2}xy-3\right)\)
Chúc bạn học tốt!!!
Bài 1:
a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)
=>2x-10=x+2
=>x=12
b: \(\Leftrightarrow\left(x+2\right)^2=100\)
=>x+2=10 hoặc x+2=-10
=>x=-12 hoặc x=8
c: \(\Leftrightarrow\left(2x-5\right)^3=27\)
=>2x-5=3
=>2x=8
=>x=4
1.
\(\left(\dfrac{-1}{8}+\dfrac{-5}{6}\right)\cdot\dfrac{6}{23}\\ =-\dfrac{23}{24}\cdot\dfrac{6}{23}\\ =-\dfrac{6}{24}=-\dfrac{1}{4}\)
2. Xem lại đề nha!
4.
\(x+0,75=-1\dfrac{1}{4}\\ x+\dfrac{3}{4}=-\dfrac{3}{4}\\ x=-\dfrac{3}{4}-\dfrac{3}{4}\\ x=-\dfrac{3}{4}+\left(-\dfrac{3}{4}\right)=-\dfrac{6}{4}=-\dfrac{3}{2}\)
5.
\(\dfrac{x}{28}=-\dfrac{4}{7}\\ \Leftrightarrow7x=-4.28\\ \Rightarrow7x=-112\\ \Rightarrow x=-112:7=-16\)
6.
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Leftrightarrow\dfrac{x}{7}=\dfrac{y}{9}\Leftrightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Vậy giá trị của tỉ số \(\dfrac{x}{y}=\dfrac{7}{9}\).
a) Ta có :\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)\(=\dfrac{5x+2y+z}{555+444+333}=\dfrac{1100}{1332}=\dfrac{275}{333}\)
Từ đó tìm được x;y;z
b) Từ \(\dfrac{x}{2}=\dfrac{y}{3}\) \(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}\)
Đặt \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4k\\y^2=9k\end{matrix}\right.\)
\(\Rightarrow x^2\cdot y^2=4k\cdot9k=52\)
\(\Rightarrow36k^2=52\)
\(\Rightarrow k^2=\dfrac{13}{9}\) (sai đề)
b: Sửa đề: x^2+y^2=52
Đặt x/2=y/3=k
=>x=2k; y=3k
x^2+y^2=52
=>4k^2+9k^2=52
=>k^2=4
TH1: k=2
=>x=4; y=6
TH2: k=-2
=>x=-4; y=-6
c: Đặt x/5=y/3=k
=>x=5k; y=3k
x^2-y^2=16
=>25k^2-9k^2=16
=>k^2=1
TH1: k=1
=>x=5; y=3
TH2: k=-1
=>x=-5; y=-3
d: Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: xy=54
=>2k*3k=54
=>6k^2=54
=>k^2=9
TH1: k=3
=>x=6; y=9
TH2: k=-3
=>x=-6; y=-9
e: Đặt x/4=y/3=k
=>x=4k; y=3k
Ta có: xy=12
=>4k*3k=12
=>k^2=1
TH1: k=1
=>x=4; y=3
TH2: k=-1
=>x=-4; y=-3
a/ \(\dfrac{x}{5}=\dfrac{y}{3}\Leftrightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}\)
Áp dụng t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{25}=\dfrac{1}{4}\\\dfrac{y^2}{9}=\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6,25\\x=-6,25\end{matrix}\right.\\\left[{}\begin{matrix}y=2,25\\y=-2,25\end{matrix}\right.\end{matrix}\right.\)
Vậy .....
b/ \(\dfrac{x}{3}=\dfrac{y}{5}\)
\(\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{25}\)
\(\Leftrightarrow\dfrac{2x^2}{18}=\dfrac{y^2}{25}\)
Áp dụng t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{2x^2}{18}=\dfrac{y^2}{25}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x^2}{18}=4\\\dfrac{y^2}{25}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\left[{}\begin{matrix}y=10\\y=-10\end{matrix}\right.\end{matrix}\right.\)
Vậy ..
a, Ta có: \(\dfrac{x}{5}=\dfrac{y}{3}\Leftrightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}\) và \(x^2-y^2=4\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=0,25\)
+) \(\dfrac{x^2}{25}=0,25\Rightarrow x^2=6,25\Rightarrow x=\pm2,5\)
+) \(\dfrac{y^2}{9}=0,25\Rightarrow y^2=2,25\Rightarrow y=\pm1,5\)
Vậy ...
b, Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{25}\Leftrightarrow\dfrac{2x^2}{18}=\dfrac{y^2}{25}\) và \(2x^2-y^2=-28\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x^2}{18}=\dfrac{y^2}{25}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)
+) \(\dfrac{2x^2}{18}=4\Rightarrow2x^2=72\Rightarrow x^2=36\Rightarrow x=\pm6\)
+) \(\dfrac{y^2}{25}=4\Rightarrow y^2=100\Rightarrow y=\pm10\)
Vậy ...
\(x:y=1\dfrac{2}{3}\Rightarrow\dfrac{x}{y}=\dfrac{5}{3}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{60}{2}=30\)
\(\dfrac{x}{5}=30\Rightarrow x=150\\ \dfrac{y}{3}=30\Rightarrow y=90\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2+y^2}{4+9}=\dfrac{52}{13}=4\)
\(\dfrac{x^2}{4}=4\Rightarrow x^2=16\\ \Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
\(\dfrac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=-6\\y=6\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left\{\left(-4;-6\right);\left(4;6\right)\right\}\)