\(\dfrac{3-x}{2}+y=1\)và \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{3-x}{2}+y=1\)

=>3-x+2y=2

=>-x+2y=-1(1)

\(\dfrac{2-y}{3}+x=2\)

=>2-y+3x=6

=>3x-y=4(2)

Từ (1) và (2) suy ra x=7/5; y=1/5

b: \(\dfrac{x}{2}-\dfrac{y}{3}=\dfrac{1}{6}\)

=>3x-2y=1(3)

x-y/3=4

=>x-y=12(4)

Từ (3) và (4) suy ra x=-23; y=-35

c: \(\dfrac{x-2}{3}=y\)

=>x-2=3y

=>x-3y=2(5)

\(\dfrac{x-y}{2}=\dfrac{x}{2}\)

=>x-y=x

=>y=0

Thay y=0 vào x-3y=2, ta đc:

\(x-3\cdot0=2\)

=>x=2

11 tháng 9 2019

Tính chất của dãy tỉ số bằng nhau

b: 2x^3-1=15

=>2x^3=16

=>x=2

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)

=>y-25=32; z+9=50

=>y=57; z=41

d: 3/5x=2/3y

=>9x=10y

=>x/10=y/9=k

=>x=10k; y=9k

x^2-y^2=38

=>100k^2-81k^2=38

=>19k^2=38

=>k^2=2

TH1: k=căn 2

=>\(x=10\sqrt{2};y=9\sqrt{2}\)

TH2: k=-căn 2

=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)

27 tháng 9 2017

Bài 1:

\(a,\dfrac{x}{3}=\dfrac{y}{7}\)\(x+y=20\)

\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)

\(\Rightarrow x=2.3=6\)

\(y=2.7=14\)

Vậy \(x=6\)\(y=14\)

\(b,\dfrac{x}{5}=\dfrac{y}{2}\)\(x-y=6\)

\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)

\(\Rightarrow x=2.5=10\)

\(y=2.2=4\)

Vậy \(x=10\)\(y=4\)

\(c,\dfrac{x}{7}=\dfrac{18}{14}\)

Từ tỉ lệ thức trên ta có:

\(14x=7.18\)

\(x=\dfrac{7.18}{14}\)

\(x=9\)

Vậy \(x=9\)

\(d,6:x=1\dfrac{3}{4}:5\)

\(6:x=\dfrac{7}{20}\)

\(x=6:\dfrac{7}{20}\)

\(x=\dfrac{120}{7}\)

Vậy \(x=\dfrac{120}{7}\)

\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(x-y+z=8\)

\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)

\(\Rightarrow x=2.2=4\)

\(y=2.4=8\)

\(z=2.6=12\)

Vậy \(x=4;y=8;z=12\)

27 tháng 9 2017

a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)

Từ đó suy ra x=1,5; y=3,5

b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)

Từ đó suy ra x=2,5; y=1

c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)

d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)

e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)

Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)

a) Ta có :\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x+1}{111}=\dfrac{y+2}{222}=\dfrac{z+3}{333}=\dfrac{5x+5}{555}=\dfrac{2y+4}{444}\)\(=\dfrac{5x+2y+z}{555+444+333}=\dfrac{1100}{1332}=\dfrac{275}{333}\)

Từ đó tìm được x;y;z

b) Từ \(\dfrac{x}{2}=\dfrac{y}{3}\) \(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}\)

Đặt \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4k\\y^2=9k\end{matrix}\right.\)

\(\Rightarrow x^2\cdot y^2=4k\cdot9k=52\)

\(\Rightarrow36k^2=52\)

\(\Rightarrow k^2=\dfrac{13}{9}\) (sai đề)

16 tháng 10 2022

b: Sửa đề: x^2+y^2=52

Đặt x/2=y/3=k

=>x=2k; y=3k

x^2+y^2=52

=>4k^2+9k^2=52

=>k^2=4

TH1: k=2

=>x=4; y=6

TH2: k=-2

=>x=-4; y=-6

c: Đặt x/5=y/3=k

=>x=5k; y=3k

x^2-y^2=16

=>25k^2-9k^2=16

=>k^2=1

TH1: k=1

=>x=5; y=3

TH2: k=-1

=>x=-5; y=-3

d: Đặt x/2=y/3=k

=>x=2k; y=3k

Ta có: xy=54

=>2k*3k=54

=>6k^2=54

=>k^2=9

TH1: k=3

=>x=6; y=9

TH2: k=-3

=>x=-6; y=-9

e: Đặt x/4=y/3=k

=>x=4k; y=3k

Ta có: xy=12

=>4k*3k=12

=>k^2=1

TH1: k=1

=>x=4; y=3

TH2: k=-1

=>x=-4; y=-3

8 tháng 12 2018

Cậu không làm được hay cần gấp con nào nhỉ ?

Bài 1:

a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)

=>2x-10=x+2

=>x=12

b: \(\Leftrightarrow\left(x+2\right)^2=100\)

=>x+2=10 hoặc x+2=-10

=>x=-12 hoặc x=8

c: \(\Leftrightarrow\left(2x-5\right)^3=27\)

=>2x-5=3

=>2x=8

=>x=4

26 tháng 7 2017

a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)

Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)

\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)

\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)

Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)

26 tháng 7 2017

giúp mk nha! thank you

 

31 tháng 7 2018

Bài 1:

a) ta có: \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}=\frac{2y-4}{6}\)

ADTCDTSBN

có: \(\frac{x-1}{5}=\frac{2y-4}{6}=\frac{z-2}{2}=\frac{x-1+2y-4-z+2}{5+6-2}\)\(=\frac{\left(x+2y-z\right)-\left(1+4-2\right)}{9}=\frac{6-3}{9}=\frac{3}{9}=\frac{1}{3}\)

=>...

bn tự tính típ nhé!

b) ta có: \(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\)

ADTCDTSBN

có: \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4\)

=>...

31 tháng 7 2018

Bài 2:

a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{b}\left(đpcm\right)\)

b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)

mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

25 tháng 8 2017

a. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{5}=\dfrac{y}{7}=\dfrac{y-2x}{7-5}=\dfrac{24}{2}=12\)

\(\Rightarrow2x=12\cdot5=60\Rightarrow x=60:2=30\)

\(y=12\cdot7=84\)

Vậy x = 30 ; y = 84

b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+3y}{3+2\cdot3}=\dfrac{18}{9}=2\)

\(\Rightarrow x=2\cdot3=6\)

\(y=2\cdot2=4\)

Vậy x = 6 ; y = 4

c. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

\(\Rightarrow x=2\cdot2=4\)

\(y=3\cdot2=6\)

\(z=4\cdot2=8\)

Vậy x = 4 ; y = 6 ; z = 8

d. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y-z}{2-3-4}=\dfrac{15}{-5}=-3\)

\(\Rightarrow x=-3\cdot2=-6\)

\(y=-3\cdot3=-9\)

\(z=-3\cdot4=-12\)

Vậy \(x=-4;y=-6;z=-8\)

Câu 2: 

\(\dfrac{x+2000}{x-2000}=\dfrac{y+2001}{y-2001}\)

\(\Leftrightarrow\left(x+2000\right)\left(y-2001\right)=\left(x-2000\right)\left(y+2001\right)\)

\(\Leftrightarrow xy-2001x+2000y-4002000=xy+2001x-2000y-4002000\)

=>-2001x+2000y=2001x-2000y

=>-4002x=-4000y

=>2001x=2000y

hay x/y=2000/2001