K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

Câu 1:

Ta có:\(x\left(x^2-y\right)+x\left(y^2-y\right)-x\left(x^2+y^2\right)\)

      \(=x\left(x^2-y+y^2-y-x^2-y^2\right)\)

      \(=-2xy\)

Tại \(x=\frac{1}{2};y=-100\) PT có dạng:

       \(=-2.\frac{1}{2}.\left(-100\right)=100\)

      

23 tháng 8 2017

CẢM ƠN BN

25 tháng 8 2017

a) Ta có :125=53

Vì x,y đều cùng mũ 3

=>x=5  hoặc y=5

Nếu x=5 hoặc y=5

Thì số còn lại sẽ =0

=> các cặp số (x;y) là 

  (5;0);(0;5)

Vậy các cặp số (x;y) là

         (5;0),(0;5)

c) Với câu này thì ta có vô số số hạng phù hợp 

Ví dụ như 3-1=2 ,4-2=2...

=> ta có vô số số số hạng nhưng với điều kiện x>y😉

25 tháng 8 2017

có 1 phần tui bn

21 tháng 6 2017

a) \(x^3-2x^2+x-xy^2\)

= \(x\left(x^2-2x+1-y^2\right)\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

b) \(x^3-4x^2-12x+27\)

\(=x^3+27-4x^2-12x\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

c) \(x^2-2xy+y^2+1\)

\(=\left(x-1\right)^2+1\)

d) \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

e) \(2xy-x^2-y^2+16\)

\(=-\left(x^2-2xy+y^2-4^2\right)\)

\(=-\left(x-y-4\right)\left(x-y+4\right)\)

21 tháng 6 2017

đăng 3 câu /1 lần hỏi thôi

25 tháng 8 2017

Ta có : x^3 + y^3 = 152

(x+y)(x^2-xy+y^2)=152    (1)

Thay x^2-xy+y^2=19 vào (1) ta được:

(x+y).19=152

->x+y=8

Mà x-y=2 nên => x=5 và y=3

Vậy x=5:y=3

25 tháng 8 2017

bn có ghi thiếu để k?

4 tháng 6 2015

\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)+\left(x^2y^2z^2-x^2z^3\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy\left(y^2-z\right)\right)-\left(yz^2\left(y^2-z\right)\right)+\left(x^2z^2\left(y^2-z\right)\right)\)
\(P=\left(-x^3+xy-yz^2+x^2z^2\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2z^2-x^3\right)-\left(yz^2-xy\right)\right)\left(y^2-z\right)\)
\(P=\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2-y\right)\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(a.c\right).b\)
\(P=a.b.c\)
Vậy giá trị của P không phụ thuộc vào biến x;y;z (điều cần chứng minh)

3 tháng 6 2015

Mình cũng đang bí câu này nè 

26 tháng 11 2017

Bài 1: 

x3+y3=152=> (x+y)(x2-xy+y2)=152

 Mà x2-xy+y2=19

=> 19(x+y)=152=> x+y=8

Ta cũng có x-y=2

=> x=5;y=3

Bài 2: 

x2+4y2+z2=2x+12y-4z-14

=> x2+4y2+z2-2x-12y+4z+14=0

=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0

=> (x+1)2+(2y-3)2+(z+2)2=0

=> (x+1)2=(2y-3)2=(z+2)2=0

=> x=-1;y=3/2;z=-2

Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)

6 tháng 11 2019

b. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath