Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 -2x+9y2-6y+2=0
=> x2 - 2x.1 + 12 + (3y)2 - 2.3y.1 + 12 = 0
=> ( x - 1 )2 + ( 3y - 1 )2 = 0
Vì ( x -1 )2 \(\ge\)0
( 3y - 1 )2 \(\ge\)0
=> ( x - 1 )2 + ( 3y - 1 ) 2 \(\ge\)0
Dấu " = " xảy ra khi :
\(\orbr{\begin{cases}x-1=0\\3y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\3y=1\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}\)
Vậy \(x=1\) và \(y=\frac{1}{3}\)
Study well
\(x^2-2x+9y^2-6y+2=0\)
\(\Rightarrow x^2-2x+1+\left(3y\right)^2-6y+1=0\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(3y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\end{cases}}}\)
Vậy.......
a) x2 + y2 - 2x + 4y + 5 = 0
\(\Leftrightarrow\)( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0
\(\Leftrightarrow\)( x - 1 )2 + ( y + 2 )2 = 0
\(\Rightarrow\)x - 1 = 0 và y + 2 = 0
\(\Rightarrow\)x = 1 và y = - 2
Vậy : x = 1 và y = - 2
b) 4x2 + 9y2 - 4x - 6y + 2 = 0
\(\Leftrightarrow\)[ ( 2x )2 - 4x + 1 ] + [ ( 3y )2 - 6y + 1 ] = 0
\(\Leftrightarrow\)( 2x - 1 )2 + ( 3y - 1 )2 = 0
\(\Rightarrow\)2x - 1 = 0 và 3y - 1 = 0
\(\Rightarrow\)x = 1 / 2 và y = 1 / 3
Vậy : x = 1 / 2 và y = 1 / 3
a) \(x^2+y^2-2x+4y+5=0\)
\(x^2+y^2-2x+4y+1+4=0\)
\(\left(x^2-2x+1\right)\left(y^2+4y+4\right)=0\)
\(\left(x-1\right)^2\left(y+2\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
b) \(4x^2+9y^2-4x-6y+2=0\)
\(\left(4x^2-4x+1\right)\left(9y^2-6y+1\right)=0\)
\(\left(2x-1\right)^2\left(3y-1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\3y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{3}\end{cases}}}\)
\(a,4x^2+9y^2+4x-24y+17=0\)
\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)
\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
\(x^2+2x+9y^2+6y+15\)
\(=\left(x^2+2x+1\right)+\left(9y^2+6y+1\right)+13\)
\(=\left(x+1\right)^2+\left(3y+1\right)^2+13\ge13>0\)
Ta có:
\(x^2+2x+9y^2-6y+3=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(9y^2-6y+1\right)+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(3y-1\right)^2+1=0\)
Vì \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(3y-1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2+\left(3y-1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+\left(3y-1\right)^2+1\ge1>0\)
Vậy không tồn tại x và y để thỏa mãn đề bài...!
\(pt\Leftrightarrow\left(x+1\right)^2+\left(3y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\3y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\frac{1}{3}\end{matrix}\right.\)
Vậy...