K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

Ta có:

\(x^2+2x+9y^2-6y+3=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(9y^2-6y+1\right)+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(3y-1\right)^2+1=0\)

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(3y-1\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^2+\left(3y-1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+\left(3y-1\right)^2+1\ge1>0\)

Vậy không tồn tại x và y để thỏa mãn đề bài...!

30 tháng 5 2021

`A=x(x-6)+10=x^2-6x+10`

`=x^2 -2.x .3 + 3^2 + 1`

`=(x-3)^2+1 >0 forall x`

`B=x^2-2x+9y^2-6y+3`

`=(x^2-2x+1)+(9y^2-6y+1)+1`

`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.

 

b) Ta có: \(B=x^2+2x+y^2-4y+6\)

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)

c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)

\(=4x^2+4x+1+9y^2-6y+1-7\)

\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

 

29 tháng 6 2021

\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)

\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)

\(B=x^2+2x+y^2-4y+6\)

\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)

\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2

\(C=4x^2+4x+9y^2-6y-5\)

\(=4x^2+4x+1+9y^2-6y+1-7\)

\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)

dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)

\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)

=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)

\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)

\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)

dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

27 tháng 10 2017

Hình như bạn ghi đề thiếu -6xy thì phải pn xem coi có phải ko

27 tháng 10 2017

Hơi mờ nên bn cố nhìn nhéÔn tập cuối năm phần số học

3 tháng 7 2021

\(4x^2-4x+1+9y^2-6y+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\3y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

3 tháng 7 2021

Ta có:4x2-4x+9y2-6y+2=0

   <=>(4x2-4x+1)+(9y2-6y+1)=0

   <=> (2x-1)2+(3y-1)2=0

   \(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\3y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

12 tháng 7 2018

a, (x^2 -2x+1)+(y^2 +6y+9) =0

(x-1)^2 +(y+3)^2 =0

Do đó: x-1=0 và y+3=0

Vậy x=1 và y=-3

b, x^2 +y^2 +1=xy+x+y

2x^2 +2y^2 +2=2xy+2x+2y

2x^2 +2y^2 -2xy-2x-2y +2=0

(x^2 -2x+1)+(y^2 -2y+1)+ (x^2 +y^2 -2xy)=0

(x-1)^2 +(y-1)^2 +(x-y)^2 =0

Suy ra: x-1=0, y-1=0 và x-y=0

Vậy x=1,y=1

c,5x^2 - 4x-2xy+y^2 +1=0

(4x^2 -4x+1)+(x^2 -2xy+y^2 )=0

(2x-1)^2 +(x-y)^2 =0

Do đó: 2x-1 =0 và x=y suy ra: x=0,5 và x=y

Vậy x=y=0,5

b) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\dfrac{\left(2x+y\right)^2}{2x+y}=2x+y\)

c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\dfrac{\left(3y-x\right)^2}{3y-x}=3y-x\)

4 tháng 8 2023

\(a,VP=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left[x^2-x.2y+\left(2y\right)^2\right]\\ =x^3+\left(2y\right)^3=x^3+8y^3=VT\left(đpcm\right)\\ b,VT=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\left(x-y\right)\\ =x^3-y^3-3xy\left(x-y\right)\\ =x^3-3x^2y+3xy^2-y^3\\ =\left(x-y\right)^3=VP\left(đpcm\right)\)

4 tháng 8 2023

\(c,VT=\left(x-3y\right)\left(x^2+3xy+9y^2\right)-\left(3y+x\right)\left(9y^2-3xy+x^2\right)\\ =\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]-\left(x+3y\right).\left[x^2-x.3y+\left(3y\right)^2\right]\\ =x^3-27y^3-\left(x^3+27y^3\right)\\ =-54y^3=VP\left(đpcm\right)\)

28 tháng 9 2021

\(a,\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\right]\\ b,\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\\ \Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\\ \Leftrightarrow x,y,z\in\varnothing\left[\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\right]\)

\(c,\Leftrightarrow-\left(x^2-10xy+25y^2\right)-\left(y^2-20y+100\right)-50=0\\ \Leftrightarrow-\left(x-5y\right)^2-\left(y-10\right)^2-50=0\\ \Leftrightarrow x,y\in\varnothing\left[-\left(x-5y\right)^2-\left(y-10\right)^2-50\le-50< 0\right]\)

21 tháng 10 2021

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)