Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý
e nghĩ a phải tìm y trước rùi khi ra kết quả là y a suy ra tìm x
e nghĩ vậy nếu ko a có thể vào hocj24 để hỏi nha
chúc a thành công
Ta có: \(\frac{1}{x}+\frac{y}{5}=\frac{1}{10}\)
=> \(\frac{1}{x}=\frac{1}{10}-\frac{y}{5}\)
=> \(\frac{1}{x}=\frac{1-2y}{10}\)
=> \(x\left(1-2y\right)=10\)
=> \(x;1-2y\inƯ\left(\pm1;\pm2;\pm5;\pm10\right)\)
Mà 1 - 2y là số lẽ và y \(\in\)Z => 1 - 2y \(\in\)\(\left\{\pm1;\pm5\right\}\)
=> x \(\in\)\(\left\{\pm2;\pm10\right\}\)
Lập bảng :
x | 2 | -2 | 10 | -10 |
1 - 2y | 5 | -5 | 1 | -1 |
y | -2 | 3 | 0 | 1 |
Vậy ...
\(\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\)
Để x,y nguyên thì \(\left\{{}\begin{matrix}10⋮\left(2x-6\right)^2+2\\\left|y+3\right|+5\in Z\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(2x-6\right)^2+2\in\left\{2;5;10\right\}\\\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(2x-6\right)^2\in\left\{0;3;8\right\}\\\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\end{matrix}\right.\)
mà x nguyên
nên \(\left\{{}\begin{matrix}\left(2x-6\right)^2=0\\\left|y+3\right|+5=\dfrac{10}{0+2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-6=0\\\left|y+3\right|=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=6\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
Cộng ba vế trên vế theo vế ta được:
\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5\)
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-3\\x+y+z=3\end{cases}}\)
Với \(x+y+z=-3\)
\(\Rightarrow x=\frac{5}{3}\);\(y=-3\);\(z=-\frac{5}{3}\)
Với \(x+y+z=3\)
\(\Rightarrow x=-\frac{5}{3}\);\(y=3\);\(z=\frac{5}{3}\)
Tìm x, y, z biết: x,y,z tỉ lệ nghịch với 3 : 5 : 6 và x +y+ z= 42
A. x= 18; y= 14; z= 10.
B. x = 20; y = 12; z = 10.
C. x= 16; y=14.; z=12.
D. x= 20; y=10 ; z= 12.
Chúc bạn học tốt!
Tìm x, y, z biết: x,y,z tỉ lệ nghịch với 3 : 5 : 6 và x +y+ z= 42
A. x= 18; y= 14; z= 10.
B. x=20; y= 12; z= 10.
C. x= 16; y=14.; z=12.
D. x= 20; y=10 ; z= 12.
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
\(10^x=20^y.5^y=\left(20.5\right)^y=100^y=10^{10y}\)
Siu ra \(x=10y\)(y nguyên tùy ý)
P/s: Lâu quá không giải dạng này nên cx chả biết có sai sót gì chăng?
10^2y chứ tth