Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x=\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow x=\frac{y}{6}=\frac{\frac{z}{2}}{5}\)và \(x+y-\frac{z}{2}=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được
\(x=\frac{y}{6}=\frac{\frac{z}{2}}{5}=\frac{x+y-\frac{z}{2}}{1+6-5}=-\frac{20}{2}=-10\)(vì\(x+y-\frac{z}{2}=-20\))
\(\Rightarrow\hept{\begin{cases}x=-10\\y=-10\cdot6=-60\\\frac{z}{2}=-10\cdot5=-50\end{cases}}\Rightarrow\hept{\begin{cases}x=-10\\y=-60\\z=-100\end{cases}}\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Ta có \(\frac{x}{3}=\frac{y}{2};\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{10}=\frac{x-y+z}{9-6+10}=\frac{20}{13}\)
Từ \(\frac{x}{9}=\frac{20}{13}\Rightarrow x=\frac{20.9}{13}=\frac{180}{13}\)
\(\frac{y}{6}=\frac{20}{13}\Rightarrow y=\frac{20.6}{13}=\frac{120}{13}\)
\(\frac{z}{10}=\frac{20}{13}\Rightarrow z=\frac{20.10}{13}=\frac{200}{13}\)
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{y}{2}=\frac{z}{5}\Rightarrow\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{-20}{25}=\frac{-4}{5}\)
+) \(\frac{x}{4}=\frac{-4}{5}\Rightarrow x=\frac{-16}{5}\)
+) \(\frac{y}{6}=\frac{-4}{5}\Rightarrow y=\frac{-24}{5}\)
+) \(\frac{z}{15}=\frac{-4}{5}\Rightarrow z=-12\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(\frac{-16}{5},\frac{-24}{5},-12\right)\)
kcj