K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
29 tháng 1 2021

\(\hept{\begin{cases}x+y=-5\\xy=6\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5-x\\x.\left(-5-x\right)=6\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5-x\\x^2+5x+6=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-5-x\\\left(x+2\right)\left(x+3\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,y=-3\\x=-3,y=-2\end{cases}}\)

29 tháng 1 2021

Vì xy = 6

=> \(x=\frac{6}{y}\)

Khi đó x + y = -5

<=> \(\frac{6}{y}+y=-5\)

=> \(\frac{y^2+6}{y}=-5\)

=> y2 + 6 = -5y

=> y2 + 5y + 6 = 0

=> y2 + 2y + 3y + 6 = 0

=> y(y + 2) + 3(y + 2) = 0

=> (y + 3)(y + 2) = 0 

=> \(\orbr{\begin{cases}y+3=0\\y+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=-3\\y=-2\end{cases}}\)

Khi y = -3 => x = -2

Khi y = -2 => x = -3

Vậy các cặp (x;y) thỏa mãn là (-2 ; - 3) ; (-3 ; -2)

24 tháng 8 2017

HD:

          Dễ thấy  b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4

Biến đổi  P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x

                               = (x2 – 2)2 – x(x2 – 2) – 6x2

          Từ đó  Q(y) = y2 – xy – 6x2

          Tìm m, n sao cho  m.n = - 6x2 và m + n = - x  chọn m = 2x, n = -3x

          Ta có:  Q(y) = y2 + 2xy – 3xy – 6x2

                             = y(y + 2x) – 3x(y + 2x)

                             = (y + 2x)(y – 3x)

          Do đó:  P(x) = (x2 + 2x – 2)(x2 – 3x – 2).

24 tháng 8 2017

a/ tìm GT của x+y biết x-y=2; x.y=99 và y<0
Vì x-y=2 nên  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\)  
\(\Leftrightarrow\) x+y=20 hoặc x+y=-20
mà y<0 nên x+y=20

26 tháng 7 2020

Xài trò này chắc Oke :))

a)

Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p

\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)

\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)

\(=1267\)

b)

\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)

Ta tính \(x^5+y^5\) theo S và P

Dễ có:

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)

\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)

\(=S^5-5S^3P+2SP^2-S^2P\)

Chắc không nhầm lẫn gì ở việc tính toán =)))

12 tháng 6 2018

bài này cũng dễ:

  Ta có x+y=5

        =>\(\left(x+y\right)^2=5^2\)

        =>\(x^2+2xy+y^2=25\)

       =>\(x^2+2.\left(-6\right)+y^2=25\)

      =>\(x^2-12+y^2=25\)

      =>\(x^2+y^2=37\)

12 tháng 6 2018

Có x = 5-y. => xy = (5-y)y = 5y - y^2 = -6. => y =2 hoặc y=-3. th1: nếu y = 2 thì x = 3 => x^2+y^2 = 4+9=13. tương tự với trường hợp còn lại

NM
12 tháng 8 2021

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

21 tháng 11 2017

Ta có: \(x^3-y^3-x^2+2xy-y^2\)

\(=x^3-y^3-\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)

Thế vào, biến đổi rồi tính 

21 tháng 11 2017

Hình như đề bài sai ở đâu đó

Ta có: 

\(x^3-y^3-x^2+2xy-y^2=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(x^2-2xy+y^2\right)+\left(x-y\right)3xy-\left(x-y\right)^2\)

\(=\left(x-y\right)^3+\left(x-y\right)3xy-\left(x-y\right)^2=5^3+5\times3\times6-5^2=190\)

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Bài 1:
$2x(x+3)+(2x+3)(5-x)=2$

$\Leftrightarrow 2x^2+6x+(10x-2x^2+15-3x)=2$

$\Leftrightarrow 2x^2+6x+7x-2x^2+15=2$

$\Leftrightarrow 13x+15=2$

$\Leftrightarrow 13x=2-15=-13$

$\Leftrightarrow x=-13:13=-1$

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Bài 2:

$x-y=4\Rightarrow x=y+4$. Thay vào $xy=5$ thì:

$(y+4)y=5$

$\Leftrightarrow y^2+4y-5=0$

$\Leftrightarrow (y-1)(y+5)=0$

$\Leftrightarrow y=1$ hoặc $y=-5$

Nếu $y=1$ thì $x=y+4=5$. Khi đó $x^3+y^3=5^3+1^3=126$

Nếu $y=-5$ thì $x=y+4=-1$. Khi đó: $x^3+y^3=(-1)^3+(-5)^3=-126$

3 tháng 1 2017

(x^2+y^2)^2=x^4+y^4+2(xy)^2=(x^4+y^4)+2.6^2=15^2=>x^4+y^4=15^2-2.36=36(25-2.4)=36.17

6 tháng 8 2018

a)  \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)

    \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)

b)  \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)

    \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)

   \(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)