K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

ỳuyfuỳgugtti\(\text{kl_{ }kkj_{ }p}'_{o'^2'l;}\)

22 tháng 10 2017

Giải:

Theo đề ra, ta có:

\(x^3+y^3=4021\left(x^2-xy+y^2\right)\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow4021\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow x+y=4021\) (1)

Mà theo giả thiết ta có: \(x-y=1\) (2)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=\left(4021+1\right):2\\y=\left(4021-1\right):2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)

Vậy x = 2011 và y = 2010.

Chúc bạn học tốt!

22 tháng 10 2017

Trần Quốc Lộc, Hung nguyen, Gia Hân Ngô, Phạm Hoàng Giang, Toshiro Kiyoshi, @Aki Tsuki, @Trương Tú Nhi, ...

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Bài 1:
$2x(x+3)+(2x+3)(5-x)=2$

$\Leftrightarrow 2x^2+6x+(10x-2x^2+15-3x)=2$

$\Leftrightarrow 2x^2+6x+7x-2x^2+15=2$

$\Leftrightarrow 13x+15=2$

$\Leftrightarrow 13x=2-15=-13$

$\Leftrightarrow x=-13:13=-1$

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Bài 2:

$x-y=4\Rightarrow x=y+4$. Thay vào $xy=5$ thì:

$(y+4)y=5$

$\Leftrightarrow y^2+4y-5=0$

$\Leftrightarrow (y-1)(y+5)=0$

$\Leftrightarrow y=1$ hoặc $y=-5$

Nếu $y=1$ thì $x=y+4=5$. Khi đó $x^3+y^3=5^3+1^3=126$

Nếu $y=-5$ thì $x=y+4=-1$. Khi đó: $x^3+y^3=(-1)^3+(-5)^3=-126$

2 tháng 4 2022

2.

\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)

\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)

*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)

*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)

\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)

\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)

\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)

\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)

-Vậy \(n=1\)

 

 

2 tháng 4 2022

1. \(x^2+y^2=z^2\)

\(\Rightarrow x^2+y^2-z^2=0\)

\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)

-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.

\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.

-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.

*Xét \(\left(x-z\right)⋮2\):

\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.

*Xét \(\left(x+z\right)⋮2\):

\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.

 

15 tháng 11 2015

Theo giả thiết, ta có:

\(x^3+y^3=4028\left(x^2-xy+y^2\right)\Leftrightarrow\frac{x^3+y^3}{x^2-xy+y^2}=4028\Leftrightarrow\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2-xy+y^2}=4028\Leftrightarrow x+y=4028\)

Lại có: \(x-y=2\)

nên \(x+y+x-y=4028+2\Leftrightarrow2x=4030\Leftrightarrow x=2015\)

Dễ dàng suy ra được \(y=2013\)

Vậy, \(x=2015;y=2013\)

1 tháng 6 2017

TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)

Câu b :

\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)

\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)

Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)