Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Tìm x, y nguyên biết: 2x (3y – 2) + (3y – 2) = -55
=>(3y – 2)(2x + 1) = -55
=> 2x + 1 = -55/(3y - 2) (1)
Để x nguyên thì 3y – 2 ∈ Ư(-55) = {1; 5; 11; 55; -1; -5; -11; -55}
3y – 2 = 1 => 3y = 3 => y = 1, thay vào (1) => x = -28
3y – 2 = 5 => 3y = 7 => y = 7/3 (Loại)
3y – 2 = 11 => 3y = 13 => y = 13/3 (Loại)
3y – 2 = 55 => 3y = 57 => y = 19 , thay vào (1)
=> x = -13y – 2 = - 1 => 3y = 1 => y = 1/3 (Loại)
3y – 2 = -5 => 3y = -3 => y = -1, thay vào (1)
=> x = 53y – 2 = -11 => 3y = -9 => y = -3, thay vào (1)
=> x = 23y – 2 = -55 => 3y = -53 => y = -53/3 (Loại)
Vậy ta có 4 cặp số x, y nguyên thoả mãn là: (x ; y ) = (-28; 1), (-1; 19), (5; -1), (2; -3)
Tìm x ∈ N
a) 2x chia hết cho 12 ⇒ 2x ∈ B(12)
2x chia hết cho 30 ⇒ 2x ∈ B(30)
Mà x có hai chữ số ⇒ 10 ≤ x ≤ 99
\(\Rightarrow2x\in BC\left(12;30\right)\)
Mà: \(B\left(12\right)=\left\{0;12;24;36;48;60;72;84;96;108;...\right\}\)
\(B\left(30\right)=\left\{0;30;60;90;120;...\right\}\)
\(\Rightarrow BC\left(12;30\right)=\left\{0;60;...\right\}\)
\(\Rightarrow2x=60\)
\(\Rightarrow x=\dfrac{60}{2}\\ \Rightarrow x=30\)
b) \(9^{x+2}-9^{x+1}+9^x=657\)
\(\Rightarrow9^x\cdot\left(9^2-9+1\right)=957\)
\(\Rightarrow9^x\cdot\left(81-8\right)=657\)
\(\Rightarrow9^x\cdot73=657\)
\(\Rightarrow9^x=9\)
\(\Rightarrow9^x=9^1\)
\(\Rightarrow x=1\)
bạn có thể giải giùm mk bài tính nhanh đc ko??? Mk đang cần gấp á. Cảm ơn bạn nhiều nha!
\(\Rightarrow2^{2x}+2^x+2\cdot2^x+2-3^y=89\Rightarrow4^x+3\cdot2^x+2-3^y=89\)
Ta thấy \(4\equiv1\left(mod3\right)\Rightarrow4^x\equiv1^x\equiv1\left(mod3\right);3\cdot2^x\equiv0\left(mod3\right);3^y\equiv0\left(mod3\right);2\equiv2\left(mod3\right)\Rightarrow4^x+3\cdot2^x-3^y+2\equiv1+0-0+2\equiv3\equiv0\left(mod3\right)\) Mà \(89\equiv2\left(mod3\right)\) \(\Rightarrow VT\ne VP\Rightarrow\)vô lí\(\Rightarrow\) ko tồn tại x,y Vậy...