\(\inℤ\)và A \(ℤ\in\) và tìm giá trị đó

A=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

a, A =\(\frac{x+3}{x-2}=\frac{x-2+5}{x-2}\)=\(\frac{x-2}{x-2}+\frac{5}{x-2}=1+\frac{5}{x-2}\)

Để A có giá trị nguyên thì \(\frac{5}{x-2}\)có giá trị nguyên  mà x thuộc Z  =>x-2 thuộc Z       =>  x -2 thuộc Ư(5)

=> x-2\(\in\left\{\pm1,\pm5\right\}\)

=> x\(\in\left\{-3,1,3,7\right\}\) 

vậy x\(\in\left\{\pm3,1,7\right\}\)

24 tháng 2 2018

à quên 

khi x\(\in\left\{\pm3,1,7\right\}\)thay vào bt ta được 

A\(\in\left\{0,-4,2,6\right\}\) 

Vậy ...........................................(bạn tự kết luận nhé)

14 tháng 2 2019

a) x=1/-3/3/6

b)x=?

30 tháng 7 2018

Cảm ơn những bạn đã gửi câu trả lời cho mình :D

30 tháng 7 2018

1) Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}=\frac{2x+y}{10+4}=\frac{28}{14}=2\)

Nên : \(\frac{x}{5}=2\Rightarrow x=10\)

         \(\frac{y}{4}=2\Rightarrow y=8\)

Áp dụng tính chất:\(|A|\ge0\)(Dấu "=" xảy ra khi và chỉ khi A=0)

Ta có\(A\ge0+0+0=0\)

Suy ra để A nhỏ nhát \(\Leftrightarrow\hept{\begin{cases}7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{10}=\frac{y}{14}\left(1\right)\\2z-3x=0\Rightarrow2z=3x\Rightarrow\frac{z}{3}=\frac{x}{2}\Rightarrow\frac{z}{15}=\frac{x}{10}\left(2\right)\\xy+yz+xz-2000=0\Rightarrow xy+yz+xz=2000\left(3\right)\end{cases}}\)

Từ (1) và (2)

\(\Rightarrow\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\left(k\inℤ\right)\)

\(\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\left(4\right)\)

Thay (4) vào (3)

\(\Rightarrow10k14k+14k15k+10k15k=2000\)

\(\Rightarrow140k^2+210k^2+150k^2=2000\)

\(\Rightarrow500k^2=2000\Rightarrow k^2=4=2^2=\left(-2\right)^2\)

Lần lượt thay K ta tìm đc các giá trị của x,y,z

Vậy ...

15 tháng 2 2018

\(1)\) Ta có : 

\(xy+2x-y=5\)

\(\Leftrightarrow\)\(x\left(y+2\right)-y-2=3\)

\(\Leftrightarrow\)\(x\left(y+2\right)-\left(y+2\right)=3\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(y+2\right)=3\)

Đến đây bạn xét các trường hợp ra 

15 tháng 2 2018

Phần 1 có rồi , phần 2 nè !

Ta có \(M=\frac{-x+24}{x-15}=\frac{-x-15+15+24}{x-15}=\frac{-\left(x+15\right)+39}{x-15}=-1+\frac{39}{x-15}\)

Để M có giá trị lớn nhất thì \(\frac{39}{x-15}\)phải nhỏ nhất

Do đó x - 15 phải lớn nhất hay x - 15 là số nguyên âm lớn nhất

Khi đó x - 15 = -1 nên x = -16 ( thỏa mãn x thuộc Z )

Vậy.....

10 tháng 2 2020

\(A,B,C,D\inℤ\)

24 tháng 1 2018

Ta có: \(\frac{1-2x}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)

Để \(\frac{1-2x}{x+3}\in Z\Leftrightarrow x+3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy nên \(x\in\left\{-10;-4;-2;4\right\}\)

24 tháng 4 2020

chịu em chưa hc lớp 7 mới chỉ hc lớp 5

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)