\(x\inℤ\)để  \(A\inℤ\)và tìm giá trị đó 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
1 tháng 8 2021

a) \(\frac{1-x}{x+4}=\frac{5-4-x}{x+4}=\frac{5}{x+4}-1\inℤ\Leftrightarrow\frac{5}{x+4}\inℤ\)

mà \(x\inℤ\Rightarrow x+4\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)

\(\Leftrightarrow x\in\left\{-9,-5,-3,1\right\}\)

b) \(\frac{11-2x}{x-5}=\frac{1+10-2x}{x-5}=\frac{1}{x-5}-2\inℤ\Leftrightarrow\frac{1}{x-5}\inℤ\)

mà \(x\inℤ\Rightarrow x-5\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{4,6\right\}\)

c) \(\frac{x+1}{2x+1}\inℤ\Rightarrow\frac{2\left(x+1\right)}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)

mà \(x\inℤ\Rightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{-1,0\right\}\).

Thử lại đều thỏa mãn. 

15 tháng 9 2020

a) Để \(\frac{6}{2a+1}\inℤ\)thì \(6⋮2a+1\)

\(\Rightarrow2a+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

Vì \(a\inℤ\)\(\Rightarrow2a+1\)là số lẻ 

\(\Rightarrow\)\(2a+1\)là ước lẻ của 6

\(\Rightarrow2a+1\in\left\{-3;-1;1;3\right\}\)

\(\Rightarrow2a\in\left\{-4;-2;0;2\right\}\)

\(\Rightarrow a\in\left\{-2;-1;0;1\right\}\)

Vậy \(a\in\left\{-2;-1;0;1\right\}\)

b) Để \(\frac{4a-3}{5a-1}\inℤ\)thì \(4a-3⋮5a-1\)\(\Rightarrow5.\left(4a-3\right)⋮5a-1\)

Ta có: \(5\left(4a-3\right)=20a-15=20a-4-11=4\left(5a-1\right)-11\)

Vì \(4.\left(5a-1\right)⋮5a-1\)\(\Rightarrow\)Để \(4a-3⋮5a-1\)thì \(11⋮5a-1\)

\(\Rightarrow5a-1\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

\(\Leftrightarrow5a\in\left\{-10;0;2;12\right\}\)\(\Leftrightarrow a\in\left\{-2;0;\frac{2}{5};\frac{12}{5}\right\}\)

mà \(a\inℤ\)\(\Rightarrow a\in\left\{-2;0\right\}\)

Vậy \(a\in\left\{-2;0\right\}\)

c) \(\frac{a^2+3}{a-1}=\frac{a^2-1+4}{a-1}=\frac{\left(a-1\right)\left(a+1\right)+4}{a-1}=\left(a+1\right)+\frac{4}{a-1}\)

Vì \(a\inℤ\)\(\Rightarrow a+1\inℤ\)

\(\Rightarrow\)Để \(\frac{a^2+3}{a-1}\inℤ\)thì \(\frac{4}{a-1}\inℤ\)

\(\Rightarrow4⋮a-1\)\(\Rightarrow a-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow a\in\left\{-3;-1;0;2;3;5\right\}\)

Vậy \(a\in\left\{-3;-1;0;2;3;5\right\}\)

\(\frac{a^2-3a-5}{a-2}\left(1\right)=\frac{a\left(a-2\right)-\left(a+5\right)}{a-2}\)

\(=a-\frac{a+5}{a-2}=a-\frac{a-2+7}{a-2}\)

\(=a-1+\frac{7}{a+2}\)

để (1) thuộc Z thì 7 phải chia hết cho a+2 

\(\Rightarrow a+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\) 

=> a={-1;-3;5;-9}

15 tháng 9 2020

Ta có \(\frac{a^2-3a-5}{a-2}=\frac{a^2-2a-a+2-7}{a-2}=\frac{a\left(a-2\right)-\left(a-2\right)-7}{a-2}=\frac{\left(a-2\right)\left(a-1\right)-7}{a-2}\)

\(=a-1-\frac{7}{a-2}\)

Vì \(\hept{\begin{cases}a\inℤ\\-1\inℤ\end{cases}}\Rightarrow\frac{-7}{a-2}\inℤ\Rightarrow-7⋮a-2\Rightarrow a-2\inƯ\left(-7\right)\)

=> \(a-2\in\left\{1;7;-1;-7\right\}\)

=> \(a\in\left\{3;9;1;-5\right\}\)

Vậy  \(a\in\left\{3;9;1;-5\right\}\)l là giá trị cần tìm

20 tháng 2 2019

Thay x = -1/3 vào biểu thức A,ta có :

\(\left(-\frac{1}{3}\right)^3-5.\left(-\frac{1}{3}\right)^2+10\)

\(=\left(-\frac{1}{27}\right)-5.\frac{1}{9}+10\)

\(=\left(-\frac{1}{27}\right)-\frac{5}{9}+10\)

\(-\frac{16}{27}+10=\frac{286}{27}\)

Vậy ...

20 tháng 2 2019

Thay x = -0,5 vào biểu thức B ,ta có :

\(-0,5^3-4\left(-0,5\right)^2-7.\left(-0,5\right)-10\)

\(=-0,125-4.\left(-0,25\right)-3,7-10\)

\(=-0,125-\left(-1\right)-3,7-10\)

\(=\text{0.875-2,7-10}\)

\(=\text{-12.825}\)

25 tháng 8 2020

a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)

\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)

\(\Rightarrow x=-\frac{32}{65}\)

b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)

\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)

\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)

\(\Rightarrow x=\frac{231}{80}\)

25 tháng 8 2020

a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)

=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)

=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)

=> \(\frac{13}{36}x+\frac{8}{45}=0\)

=> \(\frac{13}{36}x=-\frac{8}{45}\)

=> \(x=-\frac{32}{65}\)

b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)

=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)

=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)

=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)

=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)

27 tháng 2 2019

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)

=> \(\frac{5}{x}=\frac{1-2y}{8}\)

=> 5.8 = x(1 - 2y)

=> x(1 - 2y) = 40

=> x; (1 - 2y) \(\in\)Ư(40) = {1; -1; 2; -2; 4; -4; 5; -5; 8; -8; 10; -10; 20; -20; 40; -40}

Vì 1 - 2y là số lẽ => 1 - 2y \(\in\){1; -1; 5; -5}

Lập bảng :

  1 - 2y  1  -1   5   -5
     x  40  -40  8  -8
    y  0  1  -2  3

Vậy ....

27 tháng 2 2019

\(A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\).

Để A nguyên thì A2 nguyên tức là \(\frac{4}{x-3}\) nguyên 

Nên \(x-3\inƯ\left(4\right)=\left\{\pm1;\pm4\right\}\)

\(\Rightarrow x\in\left\{-1;2;4;7\right\}\)

Thay lần lượt các giá trị x vào xem với giá trị nào của x thì A2 là số chính phương là xong!

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................