\(x\in Z\):

\(x\cdot\left(x+3\right)>0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

\(\left(x+1\right)\left(y-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0-1\\y=0+2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy x = - 1 ; y = 2

5 tháng 12 2019

Bài 1:

\(a.\left|x\right|+\left|6\right|=\left|-27\right|\\ \Leftrightarrow\left|x\right|+6=27\\ \Leftrightarrow\left|x\right|=27-6=21\\ \Leftrightarrow\left\{{}\begin{matrix}x=-21\\x=21\end{matrix}\right.\)

25 tháng 12 2019

a. |x||x| + |+6||+6| = |27|

x + 6 = 27

x = 27 - 6

x = 21

Vậy x = 21

b. |5||−5| . |x||x| = |20|

5 . x = 20

x = 20 : 5

x 4

Vậy x = 4

c. |x| = |−17| và x > 0

|x| = 17

Vì |x| = 17

nên x = -17 hoặc 17

mà x > 0 => x = 17

Vậy x = 17 hoặc x = -17

d. |x||x| = |23||23| và x < 0

|x| = 23

Vì |x| = 23

nên x = 23 hoặc -23

mà x < 0 => x = -23

e. 12 |x||x| < 15

Vì 12 |x| < 15

nên x = {12; 13; 14}

Vậy x € {12; 13; 14}

f. |x| > 3

|x| > 3

nên x = -2; -1; 0; 1; 2;

Vậy x € {-2; -1; 1; 2}

a. A=

{

xZ|3<x7}

A = {-2; -1; 0; 1; 2; 3; 4; 5; 6; 7}

b. B={xZ|3|x|<7}

B = {3; 4; 5; 6}

c. C={xZ||x|>5}

C = {6; 7; 8; 9; ...}

2 tháng 6 2016

Bài 3\(x=-2002\):

a.

\(\left|x\right|=2002\)

\(x=\pm2002\)

Vậy \(x=2002\) hoặc \(x=-2002\)

b.

\(\left|x\right|=0\)

\(x=0\)

c.

\(\left|x\right|< 3\)

\(\left|x\right|\in\left\{0;1;2\right\}\)

\(x\in\left\{-2;-2;0;1;2\right\}\)

Chúc bạn học tốtok

2 tháng 6 2016

3. Tìm x biết 

a. |x|=2002

=> x = 2002 hoặc -2002

b, |x|=0

=> x = 0

c.|x|<3

=> |x| = {0; 1; 2}

x = {0; 1; -1; 2; -2}

d.|x|>và x<-70

=> x < -70

x = {-71; -72, -73; -74; ...}

ngu thế !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

20 tháng 5 2017

a) Để \(1983\left(x-7\right)>0\) thì \(x-7>0\).

\(\Rightarrow x>0+7\Rightarrow x>7\)

\(\Rightarrow x\in\left\{8;9;10;11;12;...\right\}\)

b) Để \(\left(-2010\right)\left(x+3\right)>0\) thì \(x+3< 0\).

\(\Rightarrow x< 0-3\Rightarrow x< \left(-3\right)\)

\(\Rightarrow x\in\left\{-4;-5;-6;-7;-8;...\right\}\)

20 tháng 1 2018

Đặt A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 )

+ Xét x = 1 ; x = 2 ; x = 3 ; x = 4 thì ta luôn có A = 0 ( loại )

Xét x < 1 ta có :

x - 1 < 0

x - 2 < 0

x - 3 < 0

x - 4 < 0

=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0       ( chọn )

Xét x > 4 ta có :

x - 1 > 0

x - 2 > 0

x - 3 > 0

x - 4 > 0

=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0       ( nhận )

Để A > 0 thì x < 1 hoặc x > 4

4 < x < 1

=> x = 3 ; 2

22 tháng 1 2018

Ta có : 

Với \(x< 1\) thì \(x-1,x-2,x-3,x-4\) đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)

Với \(1\le x< 2\) thì \(x-1\ge0;x-2,x-3,x-4\)  đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)

Với \(2\le x< 3\) thì \(x-1\ge0;x-2\ge0,x-3< 0,x-4< 0\) nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)

Với \(3\le x< 4\) thì \(x-1\ge0;x-2\ge0,x-3\ge0,x-4< 0\) nên 

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)

Với \(x\ge4\) thì  \(x-1\ge0;x-2\ge0,x-3\ge0,x-4\ge0\)

nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)

Vậy nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\Leftrightarrow x< 1\) hoặc \(2< x< 3\) hoặc x > 4.

7 tháng 6 2019

\(a,\)\(\left(3x-2\right)\left(2y-3\right)=1\)

\(\Rightarrow\)Trường hợp 1 : 

\(\hept{\begin{cases}3x-2=1\\2y-3=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

\(\Rightarrow\)Trường hợp 2 :

\(\hept{\begin{cases}3x-2=-1\\2y-3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}}\)

Vậy ....

7 tháng 6 2019

#)Giải :

\(b,\left(x+1\right).\left(2y-1\right)=12\)

\(\left(2y-2\right)y-x-13=0\)

\(2\left(x+1\right)=0\)

\(2x=-2\Rightarrow x=-1\)

\(2y-1=0\Rightarrow2y=1\Rightarrow y=\frac{1}{2}\)

1 tháng 10 2016

\(a.\left(x-4\right)\left(x+7\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)

\(b.x\left(x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)

\(c.\left(x-2\right)\left(5-x\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)

\(d.\left(x-1\right)\left(x^2+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)

6 tháng 11 2016

a) ( x - 4 ) . ( x + 7 ) = 0

một phép nhân có tích bằng 0 

=> một trong hai thừa số này bằng 0 

+) nếu x - 4 = 0 => x = 0 + 4 = 4

+) nếu x + 7 = 0 => x = 0 - 7 = -7

vậy x = { 4 ; -7 }

b) x . ( x + 3 ) = 0

x + 3 = 0 : x

x + 3 = 0

x = 0 - 3

x = -3

vậy x = -3

c) ( x - 2 ) . ( 5 - x ) = 0

một phép nhân có tích bằng 0 

=> một trong hai thừa số này bằng 0 

+) nếu x - 2 = 0 => x = 0 + 2 = 2

+) nếu 5 - x = 0 => x = 5 - 0 = 5

vậy x = { 2 ; 5 }

d) ( x - 1 ) . ( x2 + 1 ) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

+) x - 1 = 0 => x = 0 + 1 = 1

+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1

vậy x = { 1 ; -1 }