Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(5^{x+3}.5-3.5^{x+3}=2.5^{11}\)
\(5^{x+3}.\left(5-3\right)-2.5^{11}=0\)
\(5^{x+3}.2-2.5^{11}=0\)
\(2\left(5^{x+3}-5^{11}\right)=0\)
\(\Rightarrow5^{x+3}-5^{11}=0\)
\(\Rightarrow5^{x+3}=5^{11}\)
\(\Rightarrow x+3=11\)
\(\Rightarrow x=8\)
vậy \(x=8\)
sai đề rồi bạn oi 5x+4-3.5x+3=0 mà sao mà bằng 2.511được
Lời giải:
1.
$3^{x+2}+4.3^{x+1}=7.3^6$
$3^{x+1}.3+4.3^{x+1}=7.3^6$
$3^{x+1}(3+4)=7.3^6$
$3^{x+1}.7=7.3^6$
$\Rightarrow 3^{x+1}=3^6$
$\Rightarrow x+1=6$
$\Rightarrow x=5$
2.
$5^{x+4}-3.5^{x+3}=2.5^{11}$
$5^{x+3}.5-3.5^{x+3}=2.5^{11}$
$5^{x+3}(5-3)=2.5^{11}$
$2.5^{x+3}=2.5^{11}$
$\Rightarrow 5^{x+3}=5^{11}$
$\Rightarrow x+3=11$
$\Rightarrow x=8$
3.
$4^{x+3}-3.4^{x+1}=13.4^{11}$
$4^{x+1}.4^2-3.4^{x+1}=13.4^{11}$
$4^{x+1}.16-3.4^{x+1}=13.4^{11}$
$13.4^{x+1}=13.4^{11}$
$\Rightarrow 4^{x+1}=4^{11}$
$\Rightarrow x+1=11$
$\Rightarrow x=10$
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(\Rightarrow5^x.5^4-3.5^x.5^3=2.5^{11}\)
\(\Rightarrow5^x.5^3\left(5-3\right)=2.5^{11}\)
\(\Rightarrow5^x.2=2.5^8\)
\(\Rightarrow5^x=5^8\)
\(\Rightarrow x=8\)
Vậy \(x=8\)
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(\Rightarrow5^{x+3}\left(5-3\right)=2.5^{11}\)
\(\Rightarrow5^{x+3}=5^{11}\)
\(\Rightarrow x+3=11\)
\(\Rightarrow x=8\)
\(5^{x+3}(5-3)=2.5^{11}\)
<=>\(2.5^{x+3}=2.5^{11}\)
<=>\(5^{x+3}=5^{11}\)
<=>x+3=11
<=>x=8
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(\Leftrightarrow5^{x+3+1}-3.5^{x+3}=2.5^{11}\)
\(\Leftrightarrow5^{x+3}.5-3.5^{x+3}=2.5^{11}\)
\(\Leftrightarrow5^{x+3}.\left(5-3\right)=5^{11}.2\)
\(\Leftrightarrow5^{x+3}.2=5^{11}.2\)
\(\Leftrightarrow5^{x+3}=5^{11}\)
\(\Leftrightarrow x+3=11\)
\(\Leftrightarrow x=8\)
Vậy \(x=8\)
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(5^{x+3}\left(5-3\right)=2.5^{11}\)
\(5^{x+3}.2=2.5^{11}\)
\(5^{x+3}=5^{11}\)
\(x+3=11\)
\(x=8\)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)
\(4^{x+1}.13=13.4^{11}\)
\(4^{x+1}=4^{11}\)
\(x+1=11\)
\(x=10\)
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}\Rightarrow\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}=\dfrac{2x+4-3y+15+z+1}{6-\left(-12\right)+5}=\dfrac{\left(2x-3y+z\right)+\left(4+15+1\right)}{23}=\dfrac{72+20}{23}=\dfrac{92}{23}=4\)
\(\dfrac{x+2}{3}=4\Rightarrow x+2=12\Rightarrow x=10\\ \dfrac{y-5}{-4}=4\Rightarrow y-5=-16\Rightarrow y=-11\\ \dfrac{z+1}{5}=4\Rightarrow z+1=20\Rightarrow z=19\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}=\dfrac{2x-3y+z+4+15+1}{2\cdot3-3\cdot\left(-4\right)+5}=\dfrac{92}{23}=4\)
Do đó: x=10; y=-11; z=4
a,
\(\Rightarrow5^x.(1+5)=150\)
\(\Rightarrow5^x.6=150\)
\(\Rightarrow5^x=150:6\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
đây nè bạn