\(5^x+5^{x+1}=150\)

b) \(5^{x+4}-3.5^{x+3}=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

a,5x+5x+1= 150

\(\Rightarrow5^x.(1+5)=150\)

\(\Rightarrow5^x.6=150\)

\(\Rightarrow5^x=150:6\)

\(\Rightarrow5^x=25\)

\(\Rightarrow5^x=5^2\)

\(\Rightarrow x=2\)

10 tháng 12 2018

câu b làm s bnhihi

15 tháng 12 2017

\(5^{x+4}-3.5^{x+3}=2.5^{11}\)

\(5^{x+3}.5-3.5^{x+3}=2.5^{11}\)

\(5^{x+3}.\left(5-3\right)-2.5^{11}=0\)

\(5^{x+3}.2-2.5^{11}=0\)

\(2\left(5^{x+3}-5^{11}\right)=0\)

\(\Rightarrow5^{x+3}-5^{11}=0\)

\(\Rightarrow5^{x+3}=5^{11}\)

\(\Rightarrow x+3=11\)

\(\Rightarrow x=8\)

vậy \(x=8\)

15 tháng 12 2017

sai đề rồi bạn oi 5x+4-3.5x+3=0 mà sao mà bằng 2.511được

29 tháng 11 2016

a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)

\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)

\(\Rightarrow x+3=-3\)

\(\Rightarrow x=-6\)

b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)

\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)

\(\Rightarrow2x+2=-2\)

\(\Rightarrow2x=-4\)

\(\Rightarrow x=-2\)

c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)

\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)

\(\Rightarrow x+5=-4\)

\(\Rightarrow x=-9\)

29 tháng 11 2016

d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)

\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)

\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)

\(\Rightarrow2x=18\)

\(\Rightarrow x=9\)

e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)

\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)

\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)

\(\Rightarrow2x=18\)

\(\Rightarrow x=9\)

21 tháng 7 2019

\(5^{x+4}-3.5^{x+3}=2.5^{11}\)

\(5^{x+3}\left(5-3\right)=2.5^{11}\)

\(5^{x+3}.2=2.5^{11}\)

\(5^{x+3}=5^{11}\)

\(x+3=11\)

\(x=8\)

\(4^{x+3}-3.4^{x+1}=13.4^{11}\)

\(4^{x+1}\left(4^2-3\right)=13.4^{11}\)

\(4^{x+1}.13=13.4^{11}\)

\(4^{x+1}=4^{11}\)

\(x+1=11\)

\(x=10\)

a: \(\dfrac{5^5}{5^x}=5^{18}\)

=>5-x=18

hay x=-13

b: \(\dfrac{2^{4-x}}{16^5}=32^6\)

\(\Leftrightarrow2^{4-x}=\left(2^5\right)^6\cdot\left(2^4\right)^5=2^{30+20}=2^{50}\)

=>4-x=50

hay x=-46

c: \(\dfrac{2^{2x-3}}{4^{10}}=8^3\cdot16^5\)

\(\Leftrightarrow2^{2x-3}=2^9\cdot2^{20}\cdot2^{20}=2^{49}\)

=>2x-3=49

=>2x=52

hay x=26

d: \(\dfrac{2^3}{2^x}=4^5\)

\(\Leftrightarrow2^{3-x}=2^{10}\)

=>3-x=10

hay x=-7

e: \(9\cdot5^x=6\cdot5^6+3\cdot5^6\)

\(\Leftrightarrow9\cdot5^x=9\cdot5^6\)

\(\Leftrightarrow5^x=5^6\)

hay x=6

f: \(7\cdot2^x=2^9+5\cdot2^8\)

\(\Leftrightarrow2^x\cdot7=2^8\cdot7\)

\(\Leftrightarrow2^x=2^8\)

hay x=8

22 tháng 12 2016

\(5^{x+4}-3.5^{x+3}=2.5^{11}\)

\(\Rightarrow5^x.5^4-3.5^x.5^3=2.5^{11}\)

\(\Rightarrow5^x.5^3\left(5-3\right)=2.5^{11}\)

\(\Rightarrow5^x.2=2.5^8\)

\(\Rightarrow5^x=5^8\)

\(\Rightarrow x=8\)

Vậy \(x=8\)

 

26 tháng 12 2016

dùng shift shove trên casio 570 vn ế

15 tháng 12 2017

\(5^{x+3}(5-3)=2.5^{11}\)

<=>\(2.5^{x+3}=2.5^{11}\)

<=>\(5^{x+3}=5^{11}\)

<=>x+3=11

<=>x=8