Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.................. mình lớp 6 nên mình ko biết đâu .mình còn hỏi bài khó toán ở lớp nâng cao cơ mà .Bạn có biết bài đó ko ,nếu biết thì bạn vào hình winx mà trả lời nhé .
cũng cuồng song joong ki của hậu duệ mặt trời à . chăm chỉ đọc ngôn tình nha bạn
Ta có :
\(x^4+2^{4n+2}=x^4+x^2.2^{2n+2}+2^{4n+2}-x^2.2^{2n+2}=\left(x^2+2^{2n+1}\right)-\left(x.2^{n+1}\right)^2\)
\(=\left(x^2+2^{2n+1}-x.2^{n+1}\right)\left(x^2+2^{2n+1}+x.2^{n+1}\right)\)
Do x;n là số tự nhiên \(\Rightarrow x^2+2^{2n+1}+x.2^{n+1}>1\)
Vậy để \(x^4+2^{4n+2}\) là số nguyên tố \(\Leftrightarrow x^2+2^{2n+1}-x.2^{n+1}=1\)
\(\Leftrightarrow\left(x^2-2.x.2^n+2^{2n}\right)+2^{2n}=1\)
\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\)
\(\Rightarrow\orbr{\begin{cases}x-2^n=0\\2^{2n}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\n=0\end{cases}}}\)
Thử lại ta có : \(x^4+2^{4n+2}=1^4+2^{4.0+2}=1+4=5\) là số nguyên tố (TM)
Vậy \(x=1;n=0\) thì \(x^4+2^{4n+2}\) là số nguyên tố
Ta có: \(x^4+2^{4n+2}=\left(x^2\right)^2+\left(2^{2n+1}\right)^2=\left(x^2\right)^2+2.x^2.2^{2n+1}+\left(2^{2n+1}\right)^2-2.x^2.2^{2n+1}\)
\(=\left(x^2+2^{2n+1}\right)^2-4.2^{2n}.x^2=\left(x^2+2^{2n+1}\right)^2-\left(2.2^n.x\right)^2=\left(x^2+2^{2n+1}\right)^2-\left(2^{n+1}.x\right)^2\)
\(=\left(x^2-2^{n+1}.x+2^{2n+1}\right)\left(x^2+2^{n+1}.x+2^{2n+1}\right)\)
Để A là số nguyên tố thì \(\orbr{\begin{cases}x^2-2^{n+1}.x+2^{2n+1}=1\\x^2+2^{n+1}.x+2^{2n+1}=1\end{cases}}\)
Do x, n là số tự nhiên nên \(x^2+2^{n+1}.x+2^{2n+1}>2>1\)
Vậy thì \(x^2-2^{n+1}.x+2^{2n+1}=1\)
\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\Leftrightarrow\hept{\begin{cases}n=0\\\left(x-1\right)^2=0\end{cases}}\)
Vậy \(\hept{\begin{cases}n=0\\x=1\end{cases}}\)